1
|
Chen L, Nabil A, Fujisawa N, Oe E, Li K, Ebara M. A facile, flexible, and multifunctional thermo-chemotherapy system for customized treatment of drug-resistant breast cancer. J Control Release 2023; 363:550-561. [PMID: 37804880 DOI: 10.1016/j.jconrel.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Anticancer drug resistance invariably emerges and poses a significant barrier to curative therapy for various breast cancers. This results in a lack of satisfactory therapeutic medicine for cancer treatment. Herein, a universal vector system for drug-resistance breast cancer was designed to meet the needs of reversed multidrug resistance, thermo-chemotherapy, and long-term drug release behavior. The vector system comprises polycaprolactone (PCL) nanofiber mesh and magnetic nanoparticles (MNPs). PCL has excellent biocompatibility and electrospinning performance. In this study, MNPs were tailored to be thermogenic in response to an alternating magnetic field (AMF). PCL nanofiber can deliver various chemotherapy drugs, and suitable MNPs encapsulated in the nanofiber can generate hyperthermia and synergistic effect with those chemotherapy drugs. Therefore, a more personalized treatment system can be developed for different breast malignancies. In addition, the PCL nanofiber mesh (NFM) enables sustained release of the drugs for up two months, avoiding the burden on patients caused by repeated administration. Through model drugs doxorubicin (DOX) and chemosensitizers curcumin (CUR), we systematically verified the therapeutic effect of DOX-resistance breast cancer and inhibition of tumor generation in vivo. These findings represent a multifaceted platform of importance for validating strategic reversed MDR in pursuit of promoted thermo-chemotherapeutic outcomes. More importantly, the low cost and excellent safety and efficacy of this nanofiber mesh demonstrate that this can be customized multi-function vector system may be a promising candidate for refractory cancer therapy in clinical.
Collapse
Affiliation(s)
- Lili Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ahmed Nabil
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Nanami Fujisawa
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Emiho Oe
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Kai Li
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan; Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-0006, Japan; Department of Materials Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan.
| |
Collapse
|
2
|
Hebishy M, Shintouo CM, Dufait I, Debacq-Chainiaux F, Bautmans I, Njemini R. Heat shock proteins and cellular senescence in humans: A systematic review. Arch Gerontol Geriatr 2023; 113:105057. [PMID: 37207540 DOI: 10.1016/j.archger.2023.105057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/21/2023]
Abstract
Cellular senescence (CS) is a permanent arrest of cell growth and exit of the cell cycle. It is an important tumor suppression mechanism and has a key role in wound healing, tissue regeneration, and prevention of tissue fibrosis. Despite the short-term benefits of CS, accumulation of senescent cells has deleterious effects and is associated with several pathological age-related phenotypes. As Heat Shock Proteins (HSP) are associated with cyto-protection, their role in longevity and CS became a research interest. However, an overview of the relationship between HSP and CS in humans still lacks in the literature. To provide an overview of the current state of the literature, this systematic review focused on the role of HSP in the development of CS in humans. PubMed, Web of Science and Embase were systematically screened for studies on the relationship between HSP and CS in humans. A total of 14 articles were eligible for inclusion. The heterogeneity and lack of numerical reporting of outcomes obstructed the conduction of a meta-analysis. The results consistently show that HSP depletion results in increased CS, while overexpression of HSP decreases CS, whether in cancer, fibroblasts, or stem cell lines. This systematic review summarized the literature on the prospective role of HSP in the development of CS in humans.
Collapse
Affiliation(s)
- Mariam Hebishy
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium
| | - Cabirou Mounchili Shintouo
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium; Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium; Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63 Buea, Cameroon
| | - Ines Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium
| | - Florence Debacq-Chainiaux
- Research Unit on Cellular Biology (URBC), Department of Biology, University of Namur, Rue de Bruxelles, 61, Namur B-5000, Belgium
| | - Ivan Bautmans
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium; Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium
| | - Rose Njemini
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium; Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium.
| |
Collapse
|
3
|
Chen DD, Peng X, Wang Y, Jiang M, Xue M, Shang G, Liu X, Jia X, Liu B, Lu Y, Mu H, Zhang F, Hu Y. HSP90 acts as a senomorphic target in senescent retinal pigmental epithelial cells. Aging (Albany NY) 2021; 13:21547-21570. [PMID: 34495872 PMCID: PMC8457597 DOI: 10.18632/aging.203496] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/14/2021] [Indexed: 01/09/2023]
Abstract
The senescence of retinal pigment epithelial (RPE) cells is associated with age-related macular degeneration (AMD), a leading cause of blindness in the world. HSP90 is a predominant chaperone that regulates cellular homeostasis under divergent physio-pathological conditions including senescence. However, the role of HSP90 in senescent RPE cells still remains unclear. Here, we reported that HSP90 acts as a senomorphic target of senescent RPE cells in vitro. Using H2O2-induced senescent ARPE-19 cells and replicative senescent primary RPE cells from rhesus monkey, we found that HSP90 upregulates the expression of IKKα, and HIF1α in senescent ARPE-19 cells and subsequently controls the induction of distinct senescence-associated inflammatory factors. Senescent ARPE-19 cells are more resistant to the cytotoxic HSP90 inhibitor IPI504 (IC50 = 36.78 μM) when compared to normal ARPE-19 cells (IC50 = 6.16 μM). Administration of IPI504 at 0.5–5 μM can significantly inhibit the induction of IL-1β, IL-6, IL-8, MCP-1 and VEGFA in senescent ARPE-19 and the senescence-mediated migration of retinal capillary endothelial cells in vitro. In addition, we found that inhibition of HSP90 by IPI504 reduces SA-β-Gal’s protein expression and enzyme activity in a dose-dependent manner. HSP90 interacts with and regulates SA-β-Gal protein stabilization in senescent ARPE-19 cells. Taken together, these results suggest that HSP90 regulates the SASP and SA-β-Gal activity in senescent RPE cells through associating with distinctive mechanism including NF-κB, HIF1α and lysosomal SA-β-Gal. HSP90 inhibitors (e.g. IPI504) could be a promising senomorphic drug candidate for AMD intervention.
Collapse
Affiliation(s)
- Dan-Dan Chen
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xuyan Peng
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yuxuan Wang
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Mingjun Jiang
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Mengjiao Xue
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guohui Shang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Henan 450001, China
| | - Xuhui Liu
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaolin Jia
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Baixue Liu
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yingwei Lu
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hongmei Mu
- Kaifeng Key laboratory of Cataracts and Myopia, Eye Disease Institute, Kaifeng Central Hospital, Kaifeng, China
| | - Fengyan Zhang
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yanzhong Hu
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,The jointed National Laboratory of Antibody Drug Engineering, Department of Cell Biology and Genetics, The College of Basic Medical Science of Henan University, Kaifeng, China.,Kaifeng Key laboratory of Cataracts and Myopia, Eye Disease Institute, Kaifeng Central Hospital, Kaifeng, China
| |
Collapse
|
4
|
The conformation-specific Hsp90 inhibition interferes with the oncogenic RAF kinase adaptation and triggers premature cellular senescence, hence, acts as a tumor suppressor mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118943. [PMID: 33359710 DOI: 10.1016/j.bbamcr.2020.118943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/23/2020] [Accepted: 12/18/2020] [Indexed: 12/28/2022]
Abstract
Cancer emergence is associated with cellular adaptations to altered signal transduction mechanisms arbitrated by mutated kinases. Since conventional kinase inhibitors can exhibit certain limitations to such kinase adaptations, overcoming kinase adaptation for cancer treatment gains importance. The cancer chaperone, Hsp90, is implicated in the conformational maturation and functional stabilization of mutated gene products. However, its role in kinase adaptations is not explored in detail. Therefore, the present study aims to understand the mechanisms of Hsp90-dependent kinase adaptation and develop a novel antitumor strategy. We chose malignant human lung cancer cells to demonstrate Hsp90-dependent RAF oncogene adaptation. We show that RAF oncogene adaptations were predominant over wild type RAF and are facilitated by conformation-specific Hsp90. Consequently, the conformation-specific Hsp90 inhibitor, 17AAG, interfered with oncogenic RAF stability and function and inhibited cell proliferation. The enforced cytostasis further triggered premature cellular senescence and acted as an efficient and irreversible tumor suppressor mechanism. Our results also display that oncogenic RAF interactions with Hsp90 require the middle-charged region of the chaperone. Our mice xenografts revealed that 17AAG pretreated tumor cells lost their ability to proliferate and metastasize in vivo. In summary, we demonstrated Hsp90-dependent kinase adaptation in tumor cells and the effect of Hsp90 inhibition in triggering premature senescence to interfere with the tumor progression. Our findings are of both biological relevance and clinical importance.
Collapse
|
5
|
Kanugovi AV, Joseph C, Siripini S, Paithankar K, Amere SS. Compromising the constitutive p16
INK4a
expression sensitizes human neuroblastoma cells to Hsp90 inhibition and promotes premature senescence. J Cell Biochem 2019; 121:2770-2781. [DOI: 10.1002/jcb.29493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022]
Affiliation(s)
| | - Chitra Joseph
- Presently at Department of Clinical Medicine, Faculty of Medicine and Health SciencesMacquarie University Sydney Australia
| | - Satish Siripini
- CSIR‐Centre for Cellular and Molecular Biology Hyderabad Telangana India
| | | | | |
Collapse
|
6
|
Ogrodnik M, Salmonowicz H, Gladyshev VN. Integrating cellular senescence with the concept of damage accumulation in aging: Relevance for clearance of senescent cells. Aging Cell 2019; 18:e12841. [PMID: 30346102 PMCID: PMC6351832 DOI: 10.1111/acel.12841] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022] Open
Abstract
Understanding the aging process and ways to manipulate it is of major importance for biology and medicine. Among the many aging theories advanced over the years, the concept most consistent with experimental evidence posits the buildup of numerous forms of molecular damage as a foundation of the aging process. Here, we discuss that this concept integrates well with recent findings on cellular senescence, offering a novel view on the role of senescence in aging and age‐related disease. Cellular senescence has a well‐established role in cellular aging, but its impact on the rate of organismal aging is less defined. One of the most prominent features of cellular senescence is its association with macromolecular damage. The relationship between cell senescence and damage concerns both damage as a molecular signal of senescence induction and accelerated accumulation of damage in senescent cells. We describe the origin, regulatory mechanisms, and relevance of various damage forms in senescent cells. This view on senescent cells as carriers and inducers of damage puts new light on senescence, considering it as a significant contributor to the rise in organismal damage. Applying these ideas, we critically examine current evidence for a role of cellular senescence in aging and age‐related diseases. We also discuss the differential impact of longevity interventions on senescence burden and other types of age‐related damage. Finally, we propose a model on the role of aging‐related damage accumulation and the rate of aging observed upon senescent cell clearance.
Collapse
Affiliation(s)
- Mikolaj Ogrodnik
- Institute for Cell and Molecular Biosciences; Newcastle University Institute for Ageing; Newcastle upon Tyne UK
| | - Hanna Salmonowicz
- Institute for Cell and Molecular Biosciences; Newcastle University Institute for Ageing; Newcastle upon Tyne UK
| | - Vadim N. Gladyshev
- Division of Genetics; Department of Medicine; Brigham and Women's Hospital and Harvard Medical School; Boston Massachusetts
| |
Collapse
|
7
|
Simabuco FM, Morale MG, Pavan IC, Morelli AP, Silva FR, Tamura RE. p53 and metabolism: from mechanism to therapeutics. Oncotarget 2018; 9:23780-23823. [PMID: 29805774 PMCID: PMC5955117 DOI: 10.18632/oncotarget.25267] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022] Open
Abstract
The tumor cell changes itself and its microenvironment to adapt to different situations, including action of drugs and other agents targeting tumor control. Therefore, metabolism plays an important role in the activation of survival mechanisms to keep the cell proliferative potential. The Warburg effect directs the cellular metabolism towards an aerobic glycolytic pathway, despite the fact that it generates less adenosine triphosphate than oxidative phosphorylation; because it creates the building blocks necessary for cell proliferation. The transcription factor p53 is the master tumor suppressor; it binds to more than 4,000 sites in the genome and regulates the expression of more than 500 genes. Among these genes are important regulators of metabolism, affecting glucose, lipids and amino acids metabolism, oxidative phosphorylation, reactive oxygen species (ROS) generation and growth factors signaling. Wild-type and mutant p53 may have opposing effects in the expression of these metabolic genes. Therefore, depending on the p53 status of the cell, drugs that target metabolism may have different outcomes and metabolism may modulate drug resistance. Conversely, induction of p53 expression may regulate differently the tumor cell metabolism, inducing senescence, autophagy and apoptosis, which are dependent on the regulation of the PI3K/AKT/mTOR pathway and/or ROS induction. The interplay between p53 and metabolism is essential in the decision of cell fate and for cancer therapeutics.
Collapse
Affiliation(s)
- Fernando M. Simabuco
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Mirian G. Morale
- Center for Translational Investigation in Oncology/LIM24, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Isadora C.B. Pavan
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Ana P. Morelli
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fernando R. Silva
- Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rodrigo E. Tamura
- Center for Translational Investigation in Oncology/LIM24, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Marino Gammazza A, Campanella C, Barone R, Caruso Bavisotto C, Gorska M, Wozniak M, Carini F, Cappello F, D'Anneo A, Lauricella M, Zummo G, Conway de Macario E, Macario AJL, Di Felice V. Doxorubicin anti-tumor mechanisms include Hsp60 post-translational modifications leading to the Hsp60/p53 complex dissociation and instauration of replicative senescence. Cancer Lett 2016; 385:75-86. [PMID: 27836734 DOI: 10.1016/j.canlet.2016.10.045] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022]
Abstract
The chaperone Hsp60 is pro-carcinogenic in certain tumor types by interfering with apoptosis and with tumor cell death. In these tumors, it is not yet known whether doxorubicin anti-tumor effects include a blockage of the pro-carcinogenic action of Hsp60. We found a doxorubicin dose-dependent viability reduction in a human lung mucoepidermoid cell line that was paralleled by the appearance of cell senescence markers. Concomitantly, intracellular Hsp60 levels decreased while its acetylation levels increased. The data suggest that Hsp60 acetylation interferes with the formation of the Hsp60/p53 complex and/or promote its dissociation, both causing an increase in the levels of free p53, which can then activate the p53-dependent pathway toward cell senescence. On the other hand, acetylated Hsp60 is ubiquitinated and degraded and, thus, the anti-apoptotic effect of the chaperonin is abolished with subsequent tumor cell death. Our findings could help in the elucidation of the molecular mechanisms by which doxorubicin counteracts carcinogenesis and, consequently, it would open new roads for the development of cancer treatment protocols targeting Hsp60.
Collapse
Affiliation(s)
- Antonella Marino Gammazza
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy.
| | - Claudia Campanella
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Rosario Barone
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Celeste Caruso Bavisotto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Magdalena Gorska
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Michal Wozniak
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Francesco Carini
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Antonella D'Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Laboratory of Biochemistry, University of Palermo, Palermo, Italy
| | - Marianna Lauricella
- Department of Experimental Biomedicine and Clinical Neurosciences, Laboratory of Biochemistry, University of Palermo, Palermo, Italy
| | - Giovanni Zummo
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, Baltimore, MD, USA; IMET, Columbus Center, Baltimore, MD, USA
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy; Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, Baltimore, MD, USA; IMET, Columbus Center, Baltimore, MD, USA
| | - Valentina Di Felice
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| |
Collapse
|
9
|
Roundhill E, Turnbull D, Burchill S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. FASEB J 2015; 30:1712-23. [PMID: 26722004 DOI: 10.1096/fj.15-283408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/08/2015] [Indexed: 12/29/2022]
Abstract
Overexpression of plasma membrane multidrug resistance-associated protein 1 (MRP-1) in Ewing's sarcoma (ES) predicts poor outcome. MRP-1 is also expressed in mitochondria, and we have examined the submitochondrial localization of MRP-1 and investigated the mechanism of MRP-1 transport and role of this organelle in the response to doxorubicin. The mitochondrial localization of MRP-1 was examined in ES cell lines by differential centrifugation and membrane solubilization by digitonin. Whether MRP-1 is chaperoned by heat shock proteins (HSPs) was investigated by immunoprecipitation, immunofluorescence microscopy, and HSP knockout using small hairpin RNA and inhibitors (apoptozole, 17-AAG, and NVPAUY). The effect of disrupting mitochondrial MRP-1-dependent efflux activity on the cytotoxic effect of doxorubicin was investigated by counting viable cell number. Mitochondrial MRP-1 is glycosylated and localized to the outer mitochondrial membrane, where it is coexpressed with HSP90. MRP-1 binds to both HSP90 and HSP70, although only inhibition of HSP90β decreases expression of MRP-1 in the mitochondria. Disruption of mitochondrial MRP-1-dependent efflux significantly increases the cytotoxic effect of doxorubicin (combination index, <0.9). For the first time, we have demonstrated that mitochondrial MRP-1 is expressed in the outer mitochondrial membrane and is a client protein of HSP90β, where it may play a role in the doxorubicin-induced resistance of ES.-Roundhill, E., Turnbull, D., Burchill, S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.
Collapse
Affiliation(s)
- Elizabeth Roundhill
- Children's Cancer Research Group, Leeds Institute of Cancer and Pathology, St. James's University Hospital, Leeds, United Kingdom; and
| | - Doug Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Susan Burchill
- Children's Cancer Research Group, Leeds Institute of Cancer and Pathology, St. James's University Hospital, Leeds, United Kingdom; and
| |
Collapse
|
10
|
Desale SS, Raja SM, Kim JO, Mohapatra B, Soni KS, Luan H, Williams SH, Bielecki TA, Feng D, Storck M, Band V, Cohen SM, Band H, Bronich TK. Polypeptide-based nanogels co-encapsulating a synergistic combination of doxorubicin with 17-AAG show potent anti-tumor activity in ErbB2-driven breast cancer models. J Control Release 2015; 208:59-66. [PMID: 25660204 DOI: 10.1016/j.jconrel.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/02/2015] [Indexed: 12/29/2022]
Abstract
ErbB2-driven breast cancers constitute 20-25% of the cases diagnosed within the USA. The humanized anti-ErbB2 monoclonal antibody, Trastuzumab (Herceptin™; Genentech), with chemotherapy is the current standard of treatment. Novel agents and strategies continue to be explored, given the challenges posed by Trastuzumab-resistance development in most patients. The HSP90 inhibitor, 17-allylaminodemethoxygeldanamycin (17-AAG), which induces ErbB2 degradation and attenuates downstream oncogenic signaling, is one such agent that showed significant promise in early phase I and II clinical trials. Its low water solubility, potential toxicities and undesirable side effects observed in patients, partly due to the Cremophor-based formulation, have been discouraging factors in the advancement of this promising drug into clinical use. Encapsulation of 17-AAG into polymeric nanoparticle formulations, particularly in synergistic combination with conventional chemotherapeutics, represents an alternative approach to overcome these problems. Herein, we report an efficient co-encapsulation of 17-AAG and doxorubicin, a clinically well-established and effective modality in breast cancer treatment, into biodegradable and biocompatible polypeptide-based nanogels. Dual drug-loaded nanogels displayed potent cytotoxicity in a breast cancer cell panel and exerted selective synergistic anticancer activity against ErbB2-overexpressing breast cancer cell lines. Analysis of ErbB2 degradation confirmed efficient 17-AAG release from nanogels with activity comparable to free 17-AAG. Furthermore, nanogels containing both 17-AAG and doxorubicin exhibited superior antitumor efficacy in vivo in an ErbB2-driven xenograft model compared to the combination of free drugs. These studies demonstrate that polypeptide-based nanogels can serve as novel nanocarriers for encapsulating 17-AAG along with other chemotherapeutics, providing an opportunity to overcome solubility issues and thereby exploit its full potential as an anti-cancer agent.
Collapse
Affiliation(s)
- Swapnil S Desale
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, United States
| | - Srikumar M Raja
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, United States.
| | - Jong Oh Kim
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, United States; College of Pharmacy, Yeungnam University, Gyeongsan 712-749, South Korea
| | - Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, United States
| | - Kruti S Soni
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, United States
| | - Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, United States
| | - Stetson H Williams
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, United States
| | - Timothy A Bielecki
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, United States
| | - Dan Feng
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, United States
| | - Matthew Storck
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, United States
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, UNMC, United States
| | - Samuel M Cohen
- Department of Pathology and Microbiology, UNMC, United States
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, UNMC, United States.
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, United States.
| |
Collapse
|
11
|
Wartlick F, Bopp A, Henninger C, Fritz G. DNA damage response (DDR) induced by topoisomerase II poisons requires nuclear function of the small GTPase Rac. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3093-3103. [DOI: 10.1016/j.bbamcr.2013.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/14/2013] [Accepted: 08/23/2013] [Indexed: 01/12/2023]
|