1
|
Wen Z, Cai X, Liu Z, Tan L, Kong Y, Wang Y, Zhao Y. Genomic analyses reveal a lack of widespread strong selection in indigenous chickens. Poult Sci 2025; 104:105081. [PMID: 40138972 PMCID: PMC11985164 DOI: 10.1016/j.psj.2025.105081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
The study of domestication has been revolutionized with the advent of molecular genetics. Chickens, with their clear domestication history, emerge as an excellent model for study into the paths of evolution in domestication and improvement. Here we used genomic data from wild, indigenous, and commercial chickens to better understand how genetic drift and selection translate into their differentiations. Our investigation into the patterns of allelic change and divergence reveals a polygenic architecture governing genetic differentiation during domestication and improvement. We uncover distinctive population-specific differentiations in terms of genes and functions among wild, indigenous, and commercial chickens. Using Runs Of Homozygosity (ROH) based mixed model approach developed in this study, we identified only directional selection signatures occurring in wild and commercial chickens. Notably, our findings suggest that indigenous chickens serve as reservoirs of genetic diversity, necessary for rapid adaptation to new environments or subsequent modern breeding. This work provides unprecedented insights into the chicken domestication and improvement, and it illuminates our understanding of the domestication of other animal species.
Collapse
Affiliation(s)
- Zilong Wen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xinyu Cai
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zexuan Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lizhi Tan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuan Kong
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuzhan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiqiang Zhao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; National Research Facility for Phenotypic and Genotypic Analysis of Model Animals (Beijing), China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Zhang J, Jiang L, Yu L, Huan X, Zhou L, Wang C, Jin J, Zuo X, Wu N, Zhao Z, Sun H, Yu Z, Zhang G, Zhu J, Wu Z, Dong Y, Fan B, Shen C, Lu H. Rice's trajectory from wild to domesticated in East Asia. Science 2024; 384:901-906. [PMID: 38781358 DOI: 10.1126/science.ade4487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Rice (Oryza sativa) serves as a staple food for more than one-third of the global population. However, its journey from a wild gathered food to domestication remains enigmatic, sparking ongoing debates in the biological and anthropological fields. Here, we present evidence of rice phytoliths sampled from two archaeological sites in China, Shangshan and Hehuashan, near the lower reaches of the Yangtze River. We demonstrate the growth of wild rice at least 100,000 years before present, its initial exploitation as a gathered resource at about 24,000 years before present, its predomestication cultivation at about 13,000 years before present, and eventually its domestication at about 11,000 years before present. These developmental stages illuminate a protracted process of rice domestication in East Asia and extend the continuous records of cereal evolution beyond the Fertile Crescent.
Collapse
Affiliation(s)
- Jianping Zhang
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
| | - Leping Jiang
- Zhejiang Provincial Institute of Cultural Relics and Archaeology, Hangzhou 310014, China
| | - Lupeng Yu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, School of Resource and Environmental Sciences, Linyi University, Linyi 276000, China
| | - Xiujia Huan
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, School of Resource and Environmental Sciences, Linyi University, Linyi 276000, China
| | - Liping Zhou
- Laboratory for Earth Surface Processes, Department of Geography, Peking University, Beijing 100871, China
| | - Changsheng Wang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, School of Resource and Environmental Sciences, Linyi University, Linyi 276000, China
| | - Jianhui Jin
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Xinxin Zuo
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Naiqin Wu
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zhijun Zhao
- Institute of Cultural Heritage, Shandong University, Qingdao 266237, China
| | - Hanlong Sun
- Zhejiang Provincial Institute of Cultural Relics and Archaeology, Hangzhou 310014, China
| | - Zhaoyuan Yu
- Administration Center of Shangshan Site, Pujiang 322200, China
| | - Guoping Zhang
- Administration Center of Shangshan Site, Pujiang 322200, China
| | | | | | - Yajie Dong
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Baoshuo Fan
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- College of Geographical Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Caiming Shen
- Yunnan Key Laboratory of Plateau Geographical Processes and Environmental Changes, Faculty of Geography, Yunnan Normal University, Kunming 650500, China
| | - Houyuan Lu
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
3
|
Abstract
The Neolithic Revolution narrative associates early-mid Holocene domestications with the development of agriculture that fueled the rise of late Holocene civilizations. This narrative continues to be influential, even though it has been deconstructed by archaeologists and geneticists in its homeland. To further disentangle domestication from reliance on food production systems, such as agriculture, we revisit definitions of domestication and food production systems, review the late Pleistocene–early Holocene archaeobotanical record, and quantify the use, management and domestication of Neotropical plants to provide insights about the past. Neotropical plant domestication relies on common human behaviors (selection, accumulation and caring) within agroecological systems that focus on individual plants, rather than populations—as is typical of agriculture. The early archaeobotanical record includes numerous perennial and annual species, many of which later became domesticated. Some of this evidence identifies dispersal with probable cultivation, suggesting incipient domestication by 10,000 years ago. Since the Pleistocene, more than 6500, 1206 and 6261 native plant species have been used in Mesoamerica, the Central Andes and lowland South America, respectively. At least 1555, 428 and 742 are managed outside and inside food production systems, and at least 1148, 428 and 600 are cultivated, respectively, suggesting at least incipient domestication. Full native domesticates are more numerous in Mesoamerica (251) than the Andes (124) and the lowlands (45). This synthesis reveals that domestication is more common in the Neotropics than previously recognized and started much earlier than reliance on food production systems. Hundreds of ethnic groups had, and some still have, alternative strategies that do involve domestication, although they do not rely principally on food production systems, such as agriculture.
Collapse
|
4
|
Flax latitudinal adaptation at LuTFL1 altered architecture and promoted fiber production. Sci Rep 2019; 9:976. [PMID: 30700760 PMCID: PMC6354013 DOI: 10.1038/s41598-018-37086-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 11/02/2018] [Indexed: 01/30/2023] Open
Abstract
After domestication in the Near East around 10,000 years ago several founder crops, flax included, spread to European latitudes. On reaching northerly latitudes the architecture of domesticated flax became more suitable to fiber production over oil, with longer stems, smaller seeds and fewer axillary branches. Latitudinal adaptations in crops typically result in changes in flowering time, often involving the PEBP family of genes that also have the potential to influence plant architecture. Two PEBP family genes in the flax genome, LuTFL1 and LuTFL2, vary in wild and cultivated flax over latitudinal range with cultivated flax receiving LuTFL1 alleles from northerly wild flax populations. Compared to a background of population structure of flaxes over latitude, the LuTFL1 alleles display a level of differentiation that is consistent with selection for an allele III in the north. We demonstrate through heterologous expression in Arabidopsis thaliana that LuTFL1 is a functional homolog of TFL1 in A. thaliana capable of changing both flowering time and plant architecture. We conclude that specialized fiber flax types could have formed as a consequence of a natural adaptation of cultivated flax to higher latitudes.
Collapse
|
5
|
Allaby RG, Ware RL, Kistler L. A re-evaluation of the domestication bottleneck from archaeogenomic evidence. Evol Appl 2019; 12:29-37. [PMID: 30622633 PMCID: PMC6304682 DOI: 10.1111/eva.12680] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 01/03/2023] Open
Abstract
Domesticated crops show a reduced level of diversity that is commonly attributed to the "domestication bottleneck"; a drastic reduction in the population size associated with subsampling the wild progenitor species and the imposition of selection pressures associated with the domestication syndrome. A prediction of the domestication bottleneck is a sharp decline in genetic diversity early in the domestication process. Surprisingly, archaeological genomes of three major annual crops do not indicate that such a drop in diversity occurred early in the domestication process. In light of this observation, we revisit the general assumption of the domestication bottleneck concept in our current understanding of the evolutionary process of domestication.
Collapse
Affiliation(s)
| | | | - Logan Kistler
- Department of AnthropologyNational Museum of Natural HistorySmithsonian InstitutionWashingtonDistrict of Columbia
| |
Collapse
|
6
|
Kantar MB, Hüber S, Herman A, Bock DG, Baute G, Betts K, Ott M, Brandvain Y, Wyse D, Stupar RM, Rieseberg LH. Neo-Domestication of an Interspecific Tetraploid Helianthus annuus × Helianthus tuberous Population That Segregates for Perennial Habit. Genes (Basel) 2018; 9:genes9090422. [PMID: 30134600 PMCID: PMC6162802 DOI: 10.3390/genes9090422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 11/16/2022] Open
Abstract
Perennial agriculture has been proposed as an option to improve the sustainability of cropping systems, by increasing the efficiency of resource use, while also providing ecosystem services. Neo-domestication, the contemporary domestication of plants that have not previously been used in agriculture, can be used to generate new crops for these systems. Here we explore the potential of a tetraploid (2n = 4x = 68) interspecific hybrid sunflower as a perennial oilseed for use in multifunctional agricultural systems. A population of this novel tetraploid was obtained from crosses between the annual diploid oilseed crop Helianthus annuus (2n = 2x = 34) and the perennial hexaploid tuber crop Helianthus tuberosus (2n = 6x = 102). We selected for classic domestication syndrome traits for three generations. Substantial phenotypic gains were made, in some cases approaching 320%. We also analyzed the genetic basis of tuber production (i.e., perenniality), with the goal of obtaining molecular markers that could be used to facilitate future breeding in this system. Results from quantitative trait locus (QTL) mapping suggest that tuber production has an oligogenic genetic basis. Overall, this study indicates that substantial gains towards domestication goals can be achieved over contemporary time scales.
Collapse
Affiliation(s)
- Michael B Kantar
- Department of Tropical Plant & Soil Sciences, St. John Plant Science Lab, Room 102, 3190 Maile Way, Honolulu, HI 96822, USA.
- Biodiversity Research Centre and Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, British Columbia, BC V6T 1Z4, Canada.
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108, USA.
| | - Sariel Hüber
- Biodiversity Research Centre and Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, British Columbia, BC V6T 1Z4, Canada.
- Department of Biotechnology, Tel-Hai Academic College, Upper Galilee 12210, Israel.
- MIGAL-Galilee Research Institute, Kiryat Shmona 11016, Israel.
| | - Adam Herman
- Department of Plant and Microbial Biology, 123 Snyder Hall, 1475 Gortner Ave, Saint Paul, MN 55108, USA.
| | - Dan G Bock
- Biodiversity Research Centre and Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, British Columbia, BC V6T 1Z4, Canada.
| | - Greg Baute
- Biodiversity Research Centre and Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, British Columbia, BC V6T 1Z4, Canada.
| | - Kevin Betts
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108, USA.
| | - Matthew Ott
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108, USA.
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, 123 Snyder Hall, 1475 Gortner Ave, Saint Paul, MN 55108, USA.
| | - Donald Wyse
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108, USA.
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, 411 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108, USA.
| | - Loren H Rieseberg
- Biodiversity Research Centre and Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, British Columbia, BC V6T 1Z4, Canada.
| |
Collapse
|
7
|
Allaby RG, Stevens C, Lucas L, Maeda O, Fuller DQ. Geographic mosaics and changing rates of cereal domestication. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0429. [PMID: 29061901 DOI: 10.1098/rstb.2016.0429] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2017] [Indexed: 11/12/2022] Open
Abstract
Domestication is the process by which plants or animals evolved to fit a human-managed environment, and it is marked by innovations in plant morphology and anatomy that are in turn correlated with new human behaviours and technologies for harvesting, storage and field preparation. Archaeobotanical evidence has revealed that domestication was a protracted process taking thousands of plant generations. Within this protracted process there were changes in the selection pressures for domestication traits as well as variation across a geographic mosaic of wild and cultivated populations. Quantitative data allow us to estimate the changing selection coefficients for the evolution of non-shattering (domestic-type seed dispersal) in Asian rice (Oryza sativa L.), barley (Hordeum vulgare L.), emmer wheat (Triticum dicoccon (Shrank) Schübl.) and einkorn wheat (Triticum monococcum L.). These data indicate that selection coefficients tended to be low, but also that there were inflection points at which selection increased considerably. For rice, selection coefficients of the order of 0.001 prior to 5500 BC shifted to greater than 0.003 between 5000 and 4500 BC, before falling again as the domestication process ended 4000-3500 BC. In barley and the two wheats selection was strongest between 8500 and 7500 BC. The slow start of domestication may indicate that initial selection began in the Pleistocene glacial era.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'.
Collapse
Affiliation(s)
- Robin G Allaby
- School of Life Sciences, University of Warwick, Warwick, UK
| | | | | | - Osamu Maeda
- Institute for Comparative Research in Human and Social Sciences, University of Tsukuba, Tsukuba, Japan
| | | |
Collapse
|
8
|
Zhou Y, Chen Z, Cheng M, Chen J, Zhu T, Wang R, Liu Y, Qi P, Chen G, Jiang Q, Wei Y, Luo M, Nevo E, Allaby RG, Liu D, Wang J, Dvorák J, Zheng Y. Uncovering the dispersion history, adaptive evolution and selection of wheat in China. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:280-291. [PMID: 28635103 PMCID: PMC5785339 DOI: 10.1111/pbi.12770] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 05/18/2023]
Abstract
Wheat was introduced to China approximately 4500 years ago, where it adapted over a span of time to various environments in agro-ecological growing zones. We investigated 717 Chinese and 14 Iranian/Turkish geographically diverse, locally adapted wheat landraces with 27 933 DArTseq (for 717 landraces) and 312 831 Wheat660K (for a subset of 285 landraces) markers. This study highlights the adaptive evolutionary history of wheat cultivation in China. Environmental stresses and independent selection efforts have resulted in considerable genome-wide divergence at the population level in Chinese wheat landraces. In total, 148 regions of the wheat genome show signs of selection in at least one geographic area. Our data show adaptive events across geographic areas, from the xeric northwest to the mesic south, along and among homoeologous chromosomes, with fewer variations in the D genome than in the A and B genomes. Multiple variations in interdependent functional genes such as regulatory and metabolic genes controlling germination and flowering time were characterized, showing clear allelic frequency changes corresponding to the dispersion of wheat in China. Population structure and selection data reveal that Chinese wheat spread from the northwestern Caspian Sea region to South China, adapting during its agricultural trajectory to increasingly mesic and warm climatic areas.
Collapse
Affiliation(s)
- Yong Zhou
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Zhongxu Chen
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Mengping Cheng
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Jian Chen
- Chengdu City Institute of ArchaeologyChengduSichuanChina
| | - Tingting Zhu
- Department of Plant SciencesUniversity of CaliforniaDavisCAUSA
| | - Rui Wang
- State Key Lab of CAD&CGZhejiang UniversityHangzhouZhejiangChina
| | - Yaxi Liu
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Pengfei Qi
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Guoyue Chen
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Qiantao Jiang
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Yuming Wei
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Ming‐Cheng Luo
- Department of Plant SciencesUniversity of CaliforniaDavisCAUSA
| | - Eviatar Nevo
- Institute of EvolutionUniversity of HaifaHaifaIsrael
| | | | - Dengcai Liu
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest ChinaSichuan Agricultural UniversityYaanSichuanChina
| | - Jirui Wang
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest ChinaSichuan Agricultural UniversityYaanSichuanChina
| | - Jan Dvorák
- Department of Plant SciencesUniversity of CaliforniaDavisCAUSA
| | - Youliang Zheng
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest ChinaSichuan Agricultural UniversityYaanSichuanChina
| |
Collapse
|
9
|
Fuller DQ. Long and attenuated: comparative trends in the domestication of tree fruits. VEGETATION HISTORY AND ARCHAEOBOTANY 2018; 27:165-176. [PMID: 31983810 PMCID: PMC6954012 DOI: 10.1007/s00334-017-0659-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 11/27/2017] [Indexed: 05/05/2023]
Abstract
This paper asks whether we can identify a recurrent domestication syndrome for tree crops (fruits, nuts) and track archaeologically the evolution of domestication of fruits from woody perennials. While archaeobotany has made major contributions to documenting the domestication process in cereals and other annual grains, long-lived perennials have received less comparative attention. Drawing on examples from across Eurasia, comparisons suggest a tendency for the larger domesticated fruits to contain seeds that are proportionally longer, thinner and with more pointed (acute to attenuated) apices. Therefore, although changes in flavour, such as increased sweetness, are not recoverable, seed metrics and shape provide an archaeological basis for tracking domestication episodes in fruits from woody perennials. Where available, metrical data suggest length increases, as well as size diversification over time, with examples drawn from the Jomon of Japan (Castanea crenata), Neolithic China (Prunus persica) and the later Neolithic of the Near East (Olea europaea, Phoenix dactylifera) to estimate rates of change. More limited data allow us to also compare Mesoamerica avocado (Persea americana) and western Pacific Canarium sp. nuts and Spondias sp. fruits. Data from modern Indian jujube (Ziziphus mauritiana) are also considered in relation to seed length:width trends in relation to fruit contents (flesh proportion, sugar content). Despite the long generation time in tree fruits, rates of change in their seeds are generally comparable to rates of phenotypic evolution in annual grain crops, suggesting that gradual evolution via unconscious selection played a key role in initial processes of tree domestication, and that this had begun in the later Neolithic once annual crops had been domesticated, in both west and east Asia.
Collapse
Affiliation(s)
- Dorian Q. Fuller
- Institute of Archaeology, University College London, 31-34 Gordon Square, London, WC1H 0PY UK
| |
Collapse
|