1
|
Alonso VPP, Gonçalves MPMBB, de Brito FAE, Barboza GR, Rocha LDO, Silva NCC. Dry surface biofilms in the food processing industry: An overview on surface characteristics, adhesion and biofilm formation, detection of biofilms, and dry sanitization methods. Compr Rev Food Sci Food Saf 2023; 22:688-713. [PMID: 36464983 DOI: 10.1111/1541-4337.13089] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/09/2022]
Abstract
Bacterial biofilm formation in low moisture food processing (LMF) plants is related to matters of food safety, production efficiency, economic loss, and reduced consumer trust. Dry surfaces may appear dry to the naked eye, however, it is common to find a coverage of thin liquid films and microdroplets, known as microscopic surface wetness (MSW). The MSW may favor dry surface biofilm (DSB) formation. DSB formation is similar in other industries, it occurs through the processes of adhesion, production of extracellular polymeric substances, development of microcolonies and maturation, it is mediated by a quorum sensing (QS) system and is followed by dispersal, leading to disaggregation. Species that survive on dry surfaces develop tolerance to different stresses. DSB are recalcitrant and contribute to higher resistance to sanitation, becoming potential sources of contamination, related to the spoilage of processed products and foodborne disease outbreaks. In LMF industries, sanitization is performed using physical methods without the presence of water. Although alternative dry sanitizing methods can be efficiently used, additional studies are still required to develop and assess the effect of emerging technologies, and to propose possible combinations with traditional methods to enhance their effects on the sanitization process. Overall, more information about the different technologies can help to find the most appropriate method/s, contributing to the development of new sanitization protocols. Thus, this review aimed to identify the main characteristics and challenges of biofilm management in low moisture food industries, and summarizes the mechanisms of action of different dry sanitizing methods (alcohol, hot air, UV-C light, pulsed light, gaseous ozone, and cold plasma) and their effects on microbial metabolism.
Collapse
Affiliation(s)
- Vanessa Pereira Perez Alonso
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Maria Paula M B B Gonçalves
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | | | - Giovana Rueda Barboza
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Liliana de Oliveira Rocha
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | | |
Collapse
|
2
|
Yang W, Ren J, Li J, Zhang H, Ma K, Wang Q, Gao Z, Wu C, Gates ID. A novel Fe-Co double-atom catalyst with high low-temperature activity and strong water-resistant for O 3 decomposition: A theoretical exploration. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126639. [PMID: 34396974 DOI: 10.1016/j.jhazmat.2021.126639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/19/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Developing catalysts with high activity, durability, and water resistance for ozone decomposition is crucial to regulate the pollution of ozone in the troposphere, especially in indoor air. To overcome the shortcomings of metal oxide catalysts with respect to their durability and water resistance, Fe-Co double-atom catalyst (DAC) is proposed as a novel catalyst for ozone decomposition. Here, through a systematic study using density functional theory (DFT) calculations and microkinetic modeling, the adsorption and catalytic decomposition of O3 on Fe-Co DAC have been examined based on adsorption configuration, orbital hybridization, and electron transfer. Based on Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) reaction mechanisms, the mechanisms of ozone decomposition on Fe-Co DAC were explored by analyzing reaction paths and energy variations. To confirm the water-resistant of Fe-Co DAC, competitive adsorption behavior between O3 and dominant environmental gases was discussed through ab initio molecular dynamic (AIMD) simulation. The dominant reaction mechanism of ozone decomposition is L-H and the rate-determining step is the desorption of the first oxygen molecule from the surface of Fe-Co DAC which has an energy barrier of 0.78 eV. Due to this relatively low energy barrier and high turnover frequency (TOF), the optimal operation window of catalytic O3 decomposition on Fe-Co DAC is <500 K suggesting that catalytic decomposition of O3 on Fe-Co DAC can occur at room temperature. This theoretical study provides new insights for designing novel catalysts for ozone decomposition and fundamental guidance for subsequent experimental research.
Collapse
Affiliation(s)
- Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Jianuo Ren
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Jiajia Li
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Hanwen Zhang
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Kai Ma
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Qingwu Wang
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Zhengyang Gao
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China.
| | - Chongchong Wu
- Department of Chemical and Petroleum Engineering, University of Calgary, T2N 1N4 Calgary, Alberta, Canada
| | - Ian D Gates
- Department of Chemical and Petroleum Engineering, University of Calgary, T2N 1N4 Calgary, Alberta, Canada.
| |
Collapse
|
3
|
Hatch GE, Crissman K, Schmid J, Richards JE, Ward WO, Schladweiler MC, Ledbetter AD, Kodavanti UP. Strain differences in antioxidants in rat models of cardiovascular disease exposed to ozone. Inhal Toxicol 2016; 27 Suppl 1:54-62. [PMID: 26667331 DOI: 10.3109/08958378.2014.954170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We examined the hypothesis that antioxidant substances and enzymes in lung, heart and in bronchoalveolar lavage fluid (BALF) are altered in response to O3 in cardiovascular disease and/or metabolic syndrome (CVD)-prone rat models. CVD strains [spontaneously hypertensive (SH), SH stroke-prone (SHSP), SHHF/Mcc heart failure obese (SHHF), insulin-resistant JCR:LA-cp obese (JCR) and Fawn-Hooded hypertensive (FHH)] were compared with normal strains [Wistar, Sprague-Dawley (SD) and Wistar Kyoto (WKY)]. Total glutathione (GSH + GSSG or GSx), reduced ascorbate (AH2), uric acid (UA) and antioxidant enzymes were determined in lung, heart and BALF immediately (0 h) or 20-h post 4-h nose-only exposure to 0.0, 0.25, 0.5 and 1.0 ppm O3. Basal- and O3-induced antioxidant substances in tissues varied widely among strains. Wistar rats had a robust O3-induced increase in GSx and AH2 in the lung. Two CVD strains (JCR and SHHF) had high basal levels of AH2 and GSx in BALF as well as high basal lung UA. Across all strains, high BALF GSx was only observed when high BALF AH2 was present. CVD rats tended to respond less to O3 than normal. High-basal BALF AH2 levels were associated with decreased O3 toxicity. In summary, large differences were observed between both normal and CVD rat strains in low-molecular weight antioxidant concentrations in lung, BALF and heart tissue. Wistar (normal) and JCR and SHHF (CVD) rats appeared to stand out as peculiar in terms of basal- or O3-induced changes. Results elucidate interactions among antioxidants and air pollutants that could enhance understanding of cardiopulmonary disease.
Collapse
Affiliation(s)
- Gary E Hatch
- a Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA and
| | - Kay Crissman
- a Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA and
| | - Judy Schmid
- b Research Cores Unit , National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Judy E Richards
- a Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA and
| | - William O Ward
- b Research Cores Unit , National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA
| | - Mette C Schladweiler
- a Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA and
| | - Allen D Ledbetter
- a Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA and
| | - Urmila P Kodavanti
- a Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , NC , USA and
| |
Collapse
|
4
|
Paffett ML, Zychowski KE, Sheppard L, Robertson S, Weaver JM, Lucas SN, Campen MJ. Ozone Inhalation Impairs Coronary Artery Dilation via Intracellular Oxidative Stress: Evidence for Serum-Borne Factors as Drivers of Systemic Toxicity. Toxicol Sci 2015; 146:244-53. [PMID: 25962394 DOI: 10.1093/toxsci/kfv093] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ambient ozone (O3) levels are associated with cardiovascular morbidity and mortality, but the underlying pathophysiological mechanisms driving extrapulmonary toxicity remain unclear. This study examined the coronary vascular bed of rats in terms of constrictive and dilatory responses to known agonists following a single O3 inhalation exposure. In addition, serum from exposed rats was used in ex vivo preparations to examine whether bioactivity and toxic effects of inhaled O3 could be conveyed to extrapulmonary systems via the circulation. We found that 24 h following inhalation of 1 ppm O3, isolated coronary vessels exhibited greater basal tone and constricted to a greater degree to serotonin stimulation. Vasodilation to acetylcholine (ACh) was markedly diminished in coronary arteries from O3-exposed rats, compared with filtered air-exposed controls. Dilation to ACh was restored by combined superoxide dismutase and catalase treatment, and also by NADPH oxidase inhibition. When dilute (10%) serum from exposed rats was perfused into the lumen of coronary arteries from unexposed, naïve rats, the O3-induced reduction in vasodilatory response to ACh was partially recapitulated. Furthermore, following O3 inhalation, serum exhibited a nitric oxide scavenging capacity, which may partially explain blunted ACh-mediated vasodilatory responses. Thus, bioactivity from inhalation exposures may be due to compositional changes of the circulation. These studies shed light on possible mechanisms of action that may explain O3-associated cardiac morbidity and mortality in humans.
Collapse
Affiliation(s)
- Michael L Paffett
- *Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Katherine E Zychowski
- *Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Lianne Sheppard
- Departments of Biostatistics and Environmental & Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington and
| | - Sarah Robertson
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK
| | - John M Weaver
- *Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Selita N Lucas
- *Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico
| | - Matthew J Campen
- *Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico,
| |
Collapse
|
5
|
Affiliation(s)
- Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC
| |
Collapse
|