1
|
Tosello V, Di Martino L, Papathanassiu AE, Santa SD, Pizzi M, Mussolin L, Liu J, Van Vlierberghe P, Piovan E. BCAT1 is a NOTCH1 target and sustains the oncogenic function of NOTCH1. Haematologica 2025; 110:350-367. [PMID: 39234857 PMCID: PMC11788623 DOI: 10.3324/haematol.2024.285552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
High levels of branched-chain amino acid (BCAA) transaminase 1 (BCAT1) have been associated with tumor aggressiveness and drug resistance in several cancer types. Nevertheless, the mechanistic role of BCAT1 in T-cell acute lymphoblastic leukemia (T-ALL) remains uncertain. We provide evidence that Bcat1 was over-expressed following NOTCH1-induced transformation of leukemic progenitors and that NOTCH1 directly controlled BCAT1 expression by binding to a BCAT1 promoter. Further, using a NOTCH1 gain-of-function retroviral model of T-ALL, mouse cells genetically deficient for Bcat1 showed defects in developing leukemia. In murine T-ALL cells, Bcat1 depletion or inhibition redirected leucine metabolism towards production of 3-hydroxy butyrate (3-HB), an endogenous histone deacetylase inhibitor. Consistently, BCAT1-depleted cells showed altered protein acetylation levels which correlated with a pronounced sensitivity to DNA damaging agents. In human NOTCH1-dependent leukemias, high expression levels of BCAT1 may predispose to worse prognosis. Therapeutically, BCAT1 inhibition specifically synergized with etoposide to eliminate tumors in patient-derived xenograft models suggesting that BCAT1 inhibitors may have a part to play in salvage protocols for refractory T-ALL.
Collapse
Affiliation(s)
- Valeria Tosello
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua
| | | | | | - Silvia Dalla Santa
- Department of Surgery, Oncology and Gastroenterology, University of Padua
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine - DIMED, University of Padua
| | - Lara Mussolin
- Unit of Onco-hematology, stem cell transplant and gene therapy, Department of Women's and Children's Health, University of Padua
| | - Jingjing Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Erich Piovan
- Department of Surgery, Oncology and Gastroenterology, University of Padua; Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua.
| |
Collapse
|
2
|
Shahriari Felordi M, Alikhani M, Farzaneh Z, Alipour Choshali M, Ebrahimi M, Aboulkheyr Es H, Piryaei A, Najimi M, Vosough M. (-)-Epigallocatechin-3-gallate induced apoptosis by dissociation of c-FLIP/Ku70 complex in gastric cancer cells. J Cell Mol Med 2023; 27:2572-2582. [PMID: 37537749 PMCID: PMC10468655 DOI: 10.1111/jcmm.17873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 08/05/2023] Open
Abstract
Anti-cancer properties of (-)-epigallocatechin-3-gallate (EGCG) are mediated via apoptosis induction, as well as inhibition of cell proliferation and histone deacetylase. Accumulation of stabilized cellular FLICE-inhibitory protein (c-FLIP)/Ku70 complex in the cytoplasm inhibits apoptosis through interruption of extrinsic apoptosis pathway. In this study, we evaluated the anti-cancer role of EGCG in gastric cancer (GC) cells through dissociation of c-FLIP/Ku70 complex. MKN-45 cells were treated with EGCG or its antagonist MG149 for 24 h. Apoptosis was evaluated by flow cytometry and quantitative RT-PCR. Protein expression of c-FLIP and Ku70 was analysed using western blot and immunofluorescence. Dissociation of c-FLIP/Ku70 complex as well as Ku70 translocation were studied by sub-cellular fractionation and co-immunoprecipitation. EGCG induced apoptosis in MKN-45 cells with substantial up-regulation of P53 and P21, down-regulation of c-Myc and Cyclin D1 as well as cell cycle arrest in S and G2/M check points. Moreover, EGCG treatment suppressed the expression of c-FLIP and Ku70, decreased their interaction while increasing the Ku70 nuclear content. By dissociating the c-FLIP/Ku70 complex, EGCG could be an alternative component to the conventional HDAC inhibitors in order to induce apoptosis in GC cells. Thus, its combination with other cancer therapy protocols could result in a better therapeutic outcome.
Collapse
Affiliation(s)
- Mahtab Shahriari Felordi
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Mehdi Alikhani
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Zahra Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Mahmoud Alipour Choshali
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Marzieh Ebrahimi
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Hamidreza Aboulkheyr Es
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell TherapyInstitute of Experimental and Clinical Research (IREC)BrusselsBelgium
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Experimental Cancer Medicine, Department of Laboratory MedicineKarolinska InstituteStockholmSweden
| |
Collapse
|
3
|
Zhang Y, Lv X, Chen L, Liu Y. The role and function of CLU in cancer biology and therapy. Clin Exp Med 2023; 23:1375-1391. [PMID: 36098834 DOI: 10.1007/s10238-022-00885-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
Clusterin (CLU) is a highly evolutionary conserved glycoprotein with multiple isoform-specific functions and is widely distributed in different species. Accumulated evidence has shown the prominent role of CLU in regulating several essential physiological processes, including programmed cell death, metastasis, invasion, proliferation and cell growth via regulating diverse signaling pathways to mediate cancer progression in various cancers, such as prostate, breast, lung, liver, colon, bladder and pancreatic cancer. Several studies have revealed the potential benefit of inhibiting CLU in CLU inhibition-based targeted cancer therapies in vitro, in vivo or in human, suggesting CLU is a promising therapeutic target. This review discusses the multiple functions and mechanisms of CLU in regulating tumor progression of various cancers and summarizes the inhibitors of CLU used in CLU inhibition-based targeted cancer therapies.
Collapse
Affiliation(s)
- Yefei Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Department of Biochemistry, Institute of Cancer, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Xiang Lv
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Department of Biochemistry, Institute of Cancer, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Liming Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Department of Biochemistry, Institute of Cancer, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| | - Yan Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Department of Biochemistry, Institute of Cancer, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
4
|
Zhang QQ, Zhang WJ, Chang S. HDAC6 inhibition: a significant potential regulator and therapeutic option to translate into clinical practice in renal transplantation. Front Immunol 2023; 14:1168848. [PMID: 37545520 PMCID: PMC10401441 DOI: 10.3389/fimmu.2023.1168848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/30/2023] [Indexed: 08/08/2023] Open
Abstract
Histone deacetylase 6 (HDAC6), an almost exclusively cytoplasmic enzyme, plays an essential role in many biological processes and exerts its deacetylation-dependent/independent effects on a variety of target molecules, which has contributed to the flourishing growth of relatively isoform-specific enzyme inhibitors. Renal transplantation (RT) is one of the alternatively preferred treatments and the most cost-effective treatment approaches for the great majority of patients with end-stage renal disease (ESRD). HDAC6 expression and activity have recently been shown to be increased in kidney disease in a number of studies. To date, a substantial amount of validated studies has identified HDAC6 as a pivotal modulator of innate and adaptive immunity, and HDAC6 inhibitors (HDAC6i) are being developed and investigated for use in arrays of immune-related diseases, making HDAC6i a promising therapeutic candidate for the management of a variety of renal diseases. Based on accumulating evidence, HDAC6i markedly open up new avenues for therapeutic intervention to protect against oxidative stress-induced damage, tip the balance in favor of the generation of tolerance-related immune cells, and attenuate fibrosis by inhibiting multiple activations of cell profibrotic signaling pathways. Taken together, we have a point of view that targeting HDAC6 may be a novel approach for the therapeutic strategy of RT-related complications, including consequences of ischemia-reperfusion injury, induction of immune tolerance in transplantation, equilibrium of rejection, and improvement of chronic renal graft interstitial fibrosis after transplantation in patients. Herein, we will elaborate on the unique function of HDAC6, which focuses on therapeutical mechanism of action related to immunological events with a general account of the tantalizing potential to the clinic.
Collapse
Affiliation(s)
- Qian-qian Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Wei-jie Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Sheng Chang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
5
|
Targeting histone deacetylases for cancer therapy: Trends and challenges. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
6
|
Kitagawa M, Someya M, Hasegawa T, Mikami T, Asaishi K, Hasegawa T, Matsumoto Y, Kutomi G, Takemasa I, Sakata KI. Influence of XRCC4 expression by breast cancer cells on ipsilateral recurrence after breast-conserving therapy. Strahlenther Onkol 2019; 195:648-658. [PMID: 30997540 DOI: 10.1007/s00066-019-01468-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND We examined the expression of nonhomologous end-joining (NHEJ) proteins by breast cancer cells in patients with or without ipsilateral breast tumor recurrence (IBTR) after breast-conserving therapy. We also investigated whether there was a difference of NHEJ-related protein expression by tumor cells between two types of IBTR, i.e., true recurrence (TR) with regrowth from the tumor bed or development of a new primary tumor (NP). PATIENTS AND METHODS The original cohort comprised 560 breast cancer patients who received breast-conserving therapy between February 1995 and March 2006, including 520 patients without IBTR and 40 patients with IBTR. Propensity score matching was employed to select 40 trios (120 patients) consisting of 1 patient with IBTR and 2 patients without IBTR. Immunohistochemical examination of proteins related to NHEJ was performed in surgical specimens. RESULTS The 40 patients with IBTR included 22 patients who developed TR and 18 who had NP. The 15-year overall survival rate was 85.9% for patients with NP and 95.5% for those with TR, while it was 96.5% for patients without IBTR. Patients with high XRCC4 expression in tumor cells had significantly higher IBTR rates than those with low XRCC4 expression (P < 0.001). The frequency of TR was significantly higher in patients with high expression of XRCC4 than in those with low XRCC4 expression (p < 0.001). XRCC4 expression by tumor cells was not significantly related to development of NP. CONCLUSION IBTR due to TR may be related to low radiosensitivity of tumor cells, possibly related to high XRCC4 expression.
Collapse
Affiliation(s)
- Mio Kitagawa
- Department of Radiology, Sapporo Medical University School of Medicine, 060-8543, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Masanori Someya
- Department of Radiology, Sapporo Medical University School of Medicine, 060-8543, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Tomokazu Hasegawa
- Department of Radiology, Sapporo Medical University School of Medicine, 060-8543, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Toshihiko Mikami
- Sapporo-Kotoni Breast Clinic, 063-0812, Nishi-ku, Sapporo, Hokkaido, Japan
| | - Kazuaki Asaishi
- Sapporo-Kotoni Breast Clinic, 063-0812, Nishi-ku, Sapporo, Hokkaido, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, 060-8543, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Yoshihisa Matsumoto
- Institute of Innovative Research Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology, N1-30 2‑12-1 Ookayama, Meguro-ku, 152-8550, Tokyo, Japan
| | - Goro Kutomi
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, 060-8543, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Ichiro Takemasa
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, 060-8543, Chuo-ku, Sapporo, Hokkaido, Japan
| | - Koh-Ichi Sakata
- Department of Radiology, Sapporo Medical University School of Medicine, 060-8543, Chuo-ku, Sapporo, Hokkaido, Japan.
| |
Collapse
|
7
|
Apoptosis Induction byHistone Deacetylase Inhibitors in Cancer Cells: Role of Ku70. Int J Mol Sci 2019; 20:ijms20071601. [PMID: 30935057 PMCID: PMC6480544 DOI: 10.3390/ijms20071601] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 01/02/2023] Open
Abstract
Histone deacetylases (HDACs) are a group of enzymes that regulate gene transcription by controlling deacetylation of histones and non-histone proteins. Overexpression of HDACs is found in some types of tumors and predicts poor prognosis. Five HDAC inhibitors are approved for the treatment of cutaneous T-cell lymphoma, peripheral T-cell lymphoma, and multiple myeloma. Treatment with HDAC inhibitors regulates gene expression with increased acetylated histones with unconfirmed connection with therapy. Apoptosis is a key mechanism by which HDAC inhibitors selectively kill cancer cells, probably due to acetylation of non-histone proteins. Ku70 is a protein that repairs DNA breaks and stabilizes anti-apoptotic protein c-FLIP and proapoptotic protein Bax, which is regulated by acetylation. HDAC inhibitors induce Ku70 acetylation with repressed c-FLIP and activated Bax in cancer cells. Current studies indicate that Ku70 is a potential target of HDAC inhibitors and plays an important role during the induction of apoptosis.
Collapse
|
8
|
Tu HJ, Lin YJ, Chao MW, Sung TY, Wu YW, Chen YY, Lin MH, Liou JP, Pan SL, Yang CR. The anticancer effects of MPT0G211, a novel HDAC6 inhibitor, combined with chemotherapeutic agents in human acute leukemia cells. Clin Epigenetics 2018; 10:162. [PMID: 30594243 PMCID: PMC6310984 DOI: 10.1186/s13148-018-0595-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/06/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There are some limitations of standard chemotherapy for acute leukemia. Vincristine and doxorubicin are commonly used for acute leukemia, but they may induce serious side effects such as cardiomyopathy and neurotoxicity. Furthermore, chemotherapy resistance occurs more and more frequently. Therefore, effective treatment strategies are needed. Histone deacetylase 6 inhibition is considered as a potential therapeutic strategy for acute leukemia, since it is observed that HDAC6 is overexpressed in acute leukemia and regulates tumor survival. Combination therapy for cancer is used to minimize adverse drug effects, reduce drug dosage, enhance efficacy, and prevent drug resistance. In order to improve efficacy of chemotherapy agents of acute leukemia, this study will investigate the effects of combination MPT0G211, a novel histone deacetylase 6 inhibitor, with doxorubicin or vincristine on human acute leukemia cells. RESULTS MPT0G211 combined with doxorubicin induces DNA damage response on human acute myeloid leukemia cells. MPT0G211 can additionally increase Ku70 acetylation and release BAX to mitochondria. Ectopic expression of HDAC6 successively reversed the apoptosis triggered by the combined treatment. Moreover, co-treatment of MPT0G211 and vincristine may alter microtubule dynamics, triggering acute lymphoblastic leukemia cells arrest in mitotic phase followed by induction of the apoptotic pathway. Finally, MPT0G211 plus doxorubicin or vincristine can significantly improve the tumor growth delay in a tumor xenograft model. CONCLUSIONS Collectively, our data highlighted that MPT0G211 in combination with chemotherapy drugs has significant anticancer activity, suggesting a novel strategy for the treatment of acute leukemia.
Collapse
Affiliation(s)
- Huang-Ju Tu
- School of Pharmacy, College of Medicine, National Taiwan University, No.33, Linsen S. Road, Taipei, 10050, Taiwan
| | - Yi-Jyun Lin
- School of Pharmacy, College of Medicine, National Taiwan University, No.33, Linsen S. Road, Taipei, 10050, Taiwan
| | - Min-Wu Chao
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ting-Yi Sung
- Ph.D Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yi-Wen Wu
- Ph.D Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Yi-Ying Chen
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Mei-Hsiang Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine, National Taiwan University, No.33, Linsen S. Road, Taipei, 10050, Taiwan.
| |
Collapse
|
9
|
Resveratrol Ameliorates Microcystin-LR-Induced Testis Germ Cell Apoptosis in Rats via SIRT1 Signaling Pathway Activation. Toxins (Basel) 2018; 10:toxins10060235. [PMID: 29890735 PMCID: PMC6024601 DOI: 10.3390/toxins10060235] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/03/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
Microcystin-leucine arginine (MC-LR), a cyclic heptapeptide produced by cyanobacteria, is a strong reproductive toxin. Studies performed in rat Sertoli cells and Chinese hamster ovary cells have demonstrated typical apoptosis after MC-LR exposure. However, little is known on how to protect against the reproductive toxicity induced by MC-LR. The present study aimed to explore the possible molecular mechanism underlying the anti-apoptosis and protective effects of resveratrol (RES) on the co-culture of Sertoli–germ cells and rat testes. The results demonstrated that MC-LR treatment inhibited the proliferation of Sertoli–germ cells and induced apoptosis. Furthermore, sirtuin 1 (SIRT1) and Bcl-2 were inhibited, while p53 and Ku70 acetylation, Bax expression, and cleaved caspase-3 were upregulated by MC-LR. However, RES pretreatment ameliorated MC-LR-induced apoptosis and SIRT1 inhibition, and downregulated the MC-LR-induced increase in p53 and Ku70 acetylation, Bax expression, and caspase-3 activation. In addition, RES reversed the MC-LR-mediated reduction in Ku70 binding to Bax. The present study indicated that the administration of RES could ameliorate MC-LR-induced Sertoli–germ cell apoptosis and protect against reproductive toxicity in rats by stimulating the SIRT1/p53 pathway, suppressing p53 and Ku70 acetylation and enhancing the binding of Ku70 to Bax.
Collapse
|
10
|
Yoon S, Beermann ML, Yu B, Shao D, Bachschmid M, Miller JB. Aberrant Caspase Activation in Laminin-α2-Deficient Human Myogenic Cells is Mediated by p53 and Sirtuin Activity. J Neuromuscul Dis 2018; 5:59-73. [PMID: 29278895 PMCID: PMC5836413 DOI: 10.3233/jnd-170262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Mutations in the LAMA2 gene encoding laminin-α2 cause congenital muscular dystrophy Type 1A (MDC1A), a severe recessive disease with no effective treatment. Previous studies have shown that aberrant activation of caspases and cell death through a pathway regulated by BAX and KU70 is a significant contributor to pathogenesis in laminin-α2-deficiency. Objectives: To identify mechanisms of pathogenesis in MDC1A. Methods: We used immunocytochemical and molecular studies of human myogenic cells and mouse muscles—comparing laminin-α2-deficient vs. healthy controls—to identify mechanisms that regulate pathological activation of caspase in laminin-α2-deficiency. Results: In cultures of myogenic cells from MDC1A donors, p53 accumulated in a subset of nuclei and aberrant caspase activation was inhibited by the p53 inhibitor pifithrin-alpha. Also, the p53 target BBC3 (PUMA) was upregulated in both MDC1A myogenic cells and Lama2–/– mouse muscles. In addition, studies with sirtuin inhibitors and SIRT1 overexpression showed that caspase activation in MDC1A myotubes was inversely related to sirtuin deacetylase activity. Caspase activation in laminin-α2-deficiency was, however, not associated with increased phosphorylation of p38 MAPK. Conclusions: Aberrant caspase activation in MDC1A cells was mediated both by sirtuin deacetylase activity and by p53. Interventions that inhibit aberrant caspase activation by targeting sirtuin or p53 function could potentially be useful in ameliorating MDC1A.
Collapse
Affiliation(s)
- Soonsang Yoon
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Mary Lou Beermann
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Bryant Yu
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Di Shao
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Markus Bachschmid
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
11
|
Gong P, Li K, Li Y, Liu D, Zhao L, Jing Y. HDAC and Ku70 axis- an effective target for apoptosis induction by a new 2-cyano-3-oxo-1,9-dien glycyrrhetinic acid analogue. Cell Death Dis 2018; 9:623. [PMID: 29795376 PMCID: PMC5967349 DOI: 10.1038/s41419-018-0602-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/25/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
Methyl 2-cyano-3,12-dioxo-18β-olean-1,9(11)-dien-30-oate (CDODO-Me, 10d) derived from glycyrrhetinic acid and methyl-2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO-Me) derived from oleanoic acid are potent apoptosis inducers developed to clinical trials. Both compounds have high affinity for reduced glutathione (GSH), which needs to be overcome to improve their target selectivity. We generated a new 10d analogue methyl 2-cyano-3-oxo-18β-olean-1,9(11), 12-trien-30-oate (COOTO, 10e), which retains high apoptosis inducing ability, while displaying decreased affinity for GSH, and explored the acting targets. We found that it induces Noxa level, reduces c-Flip level and causes Bax/Bak activation. Silencing of either Noxa or Bak significantly attenuated apoptosis induction of 10e. We linked these events due to targeting HDAC3/HDAC6 and Ku70 axis. 10e treatment reduced the levels of HDAC3 and HDAC6 with increased DNA damage/repair marker gamma-H2AX (γ-H2AX) and acetylated Ku70. c-Flip dissociates from acetylated Ku70 undergoing degradation, while Bax dissociates from acetylated Ku70 undergoing activation. Silencing of either HDAC3 or HDAC6 enhanced 10e-induced apoptosis. We reveal a new action cascade of this category of compounds that involves targeting of HADC3/6 proteins and Ku70 acetylation.
Collapse
Affiliation(s)
- Ping Gong
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Kun Li
- Department of Medicinal Chemistry, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Ying Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Dan Liu
- Department of Medicinal Chemistry, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.,Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Linxiang Zhao
- Department of Medicinal Chemistry, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.,Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yongkui Jing
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China. .,Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
12
|
Tunçdemir M, Öztürk M. Regulation of the Ku70 and apoptosis-related proteins in experimental diabetic nephropathy. Metabolism 2016; 65:1466-77. [PMID: 27621182 DOI: 10.1016/j.metabol.2016.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/17/2016] [Accepted: 06/29/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND Apoptosis contributes nephropathy pathogenesis in diabetes. However, its mechanisms still remain unclear. We examined the extent to which the angiotensin-II type 1 receptor blocker (AT1RB) irbesartan and the angiotensin converting enzyme inhibitor (ACEI) perindopril affected the apoptosis-related proteins Bcl-2, Bax, caspase-3, cytochrome-c and Ku70 in streptozotocin (STZ)-diabetic rats. MATERIALS AND METHODS Animals were divided into five groups of eight each, four of which received STZ (60mg/kg in a single dose, i.p.) to induce diabetes. The groups were performed as untreated diabetic; non-diabetic control; daily irbesartan (15mg/kg/day) or perindopril (6mg/kg/day) and also combined irbesartan and perindopril (respectively, 5mg/kg/day, 3mg/kg/day) were applied by gavage for 30days to STZ-diabetic rats. The kidney tissue analysis was performed by using immunohistochemical staining with Bcl-2, Bax, caspase-3, cytochrome-c and Ku70 antibodies and by using Western blot analysis with caspase-3 and cytochrome-c antibodies. RESULTS Immunoreactivity of Bax, caspase-3, cytochrome-c and Ku70 was increased in the tubuli and glomeruli of the untreated diabetic group, but decreased in all treated diabetic groups. In the irbesartan and perindopril treated diabetic groups Bcl-2 immunoreactivity was higher than that of the untreated diabetic group. Caspase-3 and cytoplasmic cytochrome-c protein levels increased in the untreated diabetic group. CONCLUSIONS We conclude that the increased expression of Bax and caspase-3, and the increased level of cytoplasmic cytochrome-c relate to renal tissue injury. This case is also seen in the early stages of diabetes as a result of the damage caused by local increased expression of renin angiotensin system (RAS) in the renal tissue, which is induced by hyperglycemia. The increase of the cytosolic cytochrome-c, caspase-3 and Ku70 expression in the tubuli is suggestive of apoptosis. Overall, our results show that treatments of irbesartan and perindopril are effective and efficient in preventing renal tissue injury and apoptosis by blocking the RAS in experimental diabetic nephropathy and reducing the expression of proteins associated with apoptosis.
Collapse
Affiliation(s)
- Matem Tunçdemir
- Istanbul University, Cerrahpaşa Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey.
| | - Melek Öztürk
- Istanbul University, Cerrahpaşa Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey.
| |
Collapse
|
13
|
Hada M, Subramanian C, Andrews PC, Kwok RPS. Cytosolic Ku70 regulates Bax-mediated cell death. Tumour Biol 2016; 37:13903-13914. [PMID: 27488115 PMCID: PMC5097087 DOI: 10.1007/s13277-016-5202-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/13/2016] [Indexed: 11/29/2022] Open
Abstract
The first known function of Ku70 is as a DNA repair factor in the nucleus. Using neuronal neuroblastoma cells as a model, we have established that cytosolic Ku70 binds to the pro-apoptotic protein Bax in the cytosol and blocks Bax’s cell death activity. Ku70-Bax binding is regulated by Ku70 acetylation in that when Ku70 is acetylated Bax dissociates from Ku70, triggering cell death. We propose that Ku70 may act as a survival factor in these cells such that Ku70 depletion triggers Bax-dependent cell death. Here, we addressed two fundamental questions about this model: (1) Does all Bax, which is a cytosolic protein, bind to all cytosolic Ku70? and (2) Is Ku70 a survival factor in cells types other than neuronal neuroblastoma cells? We show here that, in neuronal neuroblastoma cells, only a small fraction of Ku70 binds to a small fraction of Bax; most Bax is monomeric. Interestingly, there is no free or monomeric Ku70 in the cytosol; most cytosolic Ku70 is in complex with other factors forming several high molecular weight complexes. A fraction of cytosolic Ku70 also binds to cytosolic Ku80, Ku70’s binding partner in the nucleus. Ku70 may not be a survival factor in some cell types (Ku70-depletion less sensitive) because Ku70 depletion does not affect survival of these cells. These results indicate that, in addition to Ku70 acetylation, other factors may be involved in regulating Ku70-Bax binding in the Ku70-depletion less sensitive cells because Ku70 acetylation in these cells is not sufficient to dissociate Bax from Ku70 or to activate Bax.
Collapse
Affiliation(s)
- Manila Hada
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chitra Subramanian
- General Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Phillip C Andrews
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Roland P S Kwok
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA. .,Obstetrics and Gynecology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Kim S, Simon E, Myers L, Hamm LL, Jazwinski SM. Programmed Cell Death Genes Are Linked to Elevated Creatine Kinase Levels in Unhealthy Male Nonagenarians. Gerontology 2016; 62:519-29. [PMID: 26913518 DOI: 10.1159/000443793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/06/2016] [Indexed: 02/02/2023] Open
Abstract
Declining health in the oldest-old takes an energy toll for the simple maintenance of body functions. The underlying mechanisms, however, differ in males and females. In females, the declines are explained by loss of muscle mass; but this is not the case in males, in whom they are associated with increased levels of circulating creatine kinase. This relationship raises the possibility that muscle damage rather than muscle loss is the cause of the increased energy demands of unhealthy aging in males. We have now examined factors that contribute to the increase in creatine kinase. Much of it (60%) can be explained by a history of cardiac problems and lower kidney function, while being mitigated by moderate physical activity, reinforcing the notion that tissue damage is a likely source. In a search for genetic risk factors associated with elevated creatine kinase, the Ku70 gene XRCC6 and the ceramide synthase gene LASS1 were investigated because of their roles in telomere length and longevity and healthy aging, respectively. Single nucleotide polymorphisms in these two genes were independently associated with creatine kinase levels. The XRCC6 variant was epistatic to one of the LASS1 variants but not to the other. These gene variants have potential regulatory activity. Ku70 is an inhibitor of the proapoptotic Bax, while the product of Lass1, ceramide, operates in both caspase-dependent and -independent pathways of programmed cell death, providing a potential cellular mechanism for the effects of these genes on tissue damage and circulating creatine kinase.
Collapse
Affiliation(s)
- Sangkyu Kim
- Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, La., USA
| | | | | | | | | |
Collapse
|
15
|
LI MIN, LI JINGJING, GU QIHUA, AN JIAN, CAO LIMING, YANG HUAPING, HU CHENGPING. EGCG induces lung cancer A549 cell apoptosis by regulating Ku70 acetylation. Oncol Rep 2016; 35:2339-47. [DOI: 10.3892/or.2016.4587] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/12/2015] [Indexed: 11/06/2022] Open
|