1
|
Papalexis P, Georgakopoulou VE, Drossos PV, Thymara E, Nonni A, Lazaris AC, Zografos GC, Spandidos DA, Kavantzas N, Thomopoulou GE. Precision medicine in breast cancer (Review). Mol Clin Oncol 2024; 21:78. [PMID: 39246849 PMCID: PMC11375768 DOI: 10.3892/mco.2024.2776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Precision medicine in breast cancer is a revolutionary approach that customizes diagnosis and treatment based on individual and tumor characteristics, departing from the traditional one-size-fits-all approach. Breast cancer is diverse, with various subtypes driven by distinct genetic mutations. Understanding this diversity is crucial for tailored treatment strategies that target specific vulnerabilities in each tumor. Genetic testing, particularly for mutations in breast cancer gene (BRCA) DNA repair-associated genes, helps assess hereditary risks and influences treatment decisions. Molecular subtyping guides personalized treatments, such as hormonal therapies for receptor-positive tumors and human epidermal growth factor receptor 2 (HER2)-targeted treatments. Targeted therapies, including those for HER2-positive and hormone receptor-positive breast cancers, offer more effective and precise interventions. Immunotherapy, especially checkpoint inhibitors, shows promise, particularly in certain subtypes such as triple-negative breast cancer, with ongoing research aiming to broaden its effectiveness. Integration of big data and artificial intelligence enhances personalized treatment strategies, while liquid biopsies provide real-time insights into tumor dynamics, aiding in treatment monitoring and modification. Challenges persist, including accessibility and tumor complexity, but emerging technologies and precision prevention offer hope for improved outcomes. Ultimately, precision medicine aims to optimize treatment efficacy, minimize adverse effects and enhance the quality of life for patients with breast cancer.
Collapse
Affiliation(s)
- Petros Papalexis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | | | - Panagiotis V Drossos
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Eirini Thymara
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Aphrodite Nonni
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Andreas C Lazaris
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George C Zografos
- Department of Propedeutic Surgery, Hippokration Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Nikolaos Kavantzas
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Eleni Thomopoulou
- Cytopathology Department, 'Attikon' University General Hospital, School of Medicine, National and Kapodistrian University of Athens, 12461 Athens, Greece
| |
Collapse
|
2
|
Colbey C, Cox AJ, Pyne DB, Zhang P, Cripps AW, West NP. Upper Respiratory Symptoms, Gut Health and Mucosal Immunity in Athletes. Sports Med 2018; 48:65-77. [PMID: 29363055 PMCID: PMC5790851 DOI: 10.1007/s40279-017-0846-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Upper respiratory symptoms remain the most common illness in athletes. Upper respiratory symptoms during heavy training and competition may impair performance. Preventing illness is the primary reason for the use of supplements, such as probiotics and prebiotics, for maintaining or promoting gut health and immune function. While exercise-induced perturbations in the immune system may increase susceptibility to illness and infection, growing evidence indicates that upper respiratory symptoms are related to a breakdown in the homeostatic regulation of the mucosal immune system of the airways. Balancing protection of the respiratory tract with normal physiological functioning requires dynamic orchestration between a wide array of immune parameters. The intestinal microbiota regulates extra-intestinal immunity via the common mucosal immune system and new evidence implicates the microbiota of the nose, mouth and respiratory tract in upper respiratory symptoms. Omics’ approaches now facilitate comprehensive profiling at the molecular and proteomic levels to reveal new pathways and molecules of immune regulation. New targets may provide for personalised nutritional and training interventions to maintain athlete health.
Collapse
Affiliation(s)
- Candice Colbey
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Griffith Health Gold Coast Campus, Southport, QLD, 4222, Australia
| | - Amanda J Cox
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Griffith Health Gold Coast Campus, Southport, QLD, 4222, Australia
| | - David B Pyne
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Griffith Health Gold Coast Campus, Southport, QLD, 4222, Australia
- Faculty of Health, University of Canberra Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
- Discipline of Physiology, Australian Institute of Sport, Canberra, ACT, Australia
| | - Ping Zhang
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Griffith Health Gold Coast Campus, Southport, QLD, 4222, Australia
| | - Allan W Cripps
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Griffith Health Gold Coast Campus, Southport, QLD, 4222, Australia
| | - Nicholas P West
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Griffith Health Gold Coast Campus, Southport, QLD, 4222, Australia.
| |
Collapse
|
3
|
Reinhardt F, Franken A, Fehm T, Neubauer H. Navigation through inter- and intratumoral heterogeneity of endocrine resistance mechanisms in breast cancer: A potential role for Liquid Biopsies? Tumour Biol 2017; 39:1010428317731511. [DOI: 10.1177/1010428317731511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The majority of breast cancers are hormone receptor positive due to the expression of the estrogen and/or progesterone receptors. Endocrine therapy is a major treatment option for all disease stages of hormone receptor–positive breast cancer and improves overall survival. However, endocrine therapy is limited by de novo and acquired resistance. Several factors have been proposed for endocrine therapy failures, which include molecular alterations in the estrogen receptor pathway, altered expression of cell-cycle regulators, autophagy, and epithelial-to-mesenchymal transition as a consequence of tumor progression and selection pressure. It is essential to reveal and monitor intra- and intertumoral alterations in breast cancer to allow optimal therapy outcome. Endocrine therapy navigation by molecular profiling of tissue biopsies is the current gold standard but limited in many reasons. “Liquid biopsies” such as circulating-tumor cells and circulating-tumor DNA offer hope to fill that gap in allowing non-invasive serial assessment of biomarkers predicting success of endocrine therapy regimen. In this context, this review will provide an overview on inter- and intratumoral heterogeneity of endocrine resistance mechanisms and discuss the potential role of “liquid biopsies” as navigators to personalize treatment methods and prevent endocrine treatment resistance in breast cancer.
Collapse
Affiliation(s)
- Florian Reinhardt
- Department of Obstetrics and Gynecology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - André Franken
- Department of Obstetrics and Gynecology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|