1
|
Solomon AD, Dabral S, Brajesh RG, Day BW, Juric M, Zielonka J, Bosnjak ZJ, Pant T. Understanding the Mechanisms of Chemotherapy-Related Cardiotoxicity Employing hiPSC-Derived Cardiomyocyte Models for Drug Screening and the Identification of Genetic and Epigenetic Variants. Int J Mol Sci 2025; 26:3966. [PMID: 40362211 PMCID: PMC12071959 DOI: 10.3390/ijms26093966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/10/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Chemotherapy-related cardiotoxicity (CTRTOX) is a profound and common side effect of cancer-based therapy in a subset of patients. The underlying factors and the associated mechanisms contributing to severe toxicity of the heart among these patients remain unknown. While challenges remain in accessing human subjects and their ventricular cardiomyocytes (CMs), advancements in human induced pluripotent stem cell (hiPSC)-technology-based CM differentiation protocols over the past few decades have paved the path for iPSC-based models of human cardiac diseases. Here, we offer a detailed analysis of the underlying mechanisms of CTRTOX. We also discuss the recent advances in therapeutic strategies in different animal models and clinical trials. Furthermore, we explore the prospects of iPSC-based models for identifying novel functional targets and developing safer chemotherapy regimens for cancer patients that may be beneficial for developing personalized cardioprotectants and their application in clinical practice.
Collapse
Affiliation(s)
- Abhishikt David Solomon
- Adams School of Dentistry, Oral and Craniofacial Biomedicine, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Swarna Dabral
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Raman Gulab Brajesh
- Department of Biomedical Engineering and Bioinformatics, Swami Vivekanand Technical University, Durg 491107, India;
| | | | - Matea Juric
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; (M.J.); (J.Z.)
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; (M.J.); (J.Z.)
| | - Zeljko J. Bosnjak
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Tarun Pant
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
- Department of Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
2
|
Abstract
This paper represents the first assessment of agent-induced hormetic dose responses in induced pluripotent stem cells and their derived cells. The hormetic dose responses were induced by a broad range of chemicals, including pharmaceuticals (eg, metformin), dietary supplements/extracts from medicinal plants (eg, curcumin), and endogenous agents (eg, melatonin). The paper assesses the mechanistic foundations of these induced hormetic dose responses, their therapeutic implications and comparison with hormetic responses in multiple adult and embryonic stem cells.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
3
|
Calabrese EJ, Agathokleous E, Kapoor R, Dhawan G, Kozumbo WJ, Calabrese V. Metformin-enhances resilience via hormesis. Ageing Res Rev 2021; 71:101418. [PMID: 34365027 DOI: 10.1016/j.arr.2021.101418] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023]
Abstract
The present paper demonstrates that metformin (MF) induced a broad spectrum of hormetic biphasic dose responses in a wide range of experimental studies, affecting multiple organ systems, cell types, and endpoints enhancing resilience to chemical stresses in preconditioning and co-current exposure protocols. Detailed mechanistic evaluations indicate that MF-induced hormetic-adaptive responses are mediated often via the activation of adenosine monophosphate-activated kinase (AMPK) protein and its subsequent upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2). Hormesis-induced protective responses by MF are largely mediated via a vast and highly integrated anti-inflammatory molecular network that enhances longevity and delays the onset and slows the progression of neurodegenerative and other chronic diseases.
Collapse
|
4
|
Shoshan-Barmatz V, Anand U, Nahon-Crystal E, Di Carlo M, Shteinfer-Kuzmine A. Adverse Effects of Metformin From Diabetes to COVID-19, Cancer, Neurodegenerative Diseases, and Aging: Is VDAC1 a Common Target? Front Physiol 2021; 12:730048. [PMID: 34671273 PMCID: PMC8521008 DOI: 10.3389/fphys.2021.730048] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Metformin has been used for treating diabetes mellitus since the late 1950s. In addition to its antihyperglycemic activity, it was shown to be a potential drug candidate for treating a range of other diseases that include various cancers, cardiovascular diseases, diabetic kidney disease, neurodegenerative diseases, renal diseases, obesity, inflammation, COVID-19 in diabetic patients, and aging. In this review, we focus on the important aspects of mitochondrial dysfunction in energy metabolism and cell death with their gatekeeper VDAC1 (voltage-dependent anion channel 1) as a possible metformin target, and summarize metformin's effects in several diseases and gut microbiota. We question how the same drug can act on diseases with opposite characteristics, such as increasing apoptotic cell death in cancer, while inhibiting it in neurodegenerative diseases. Interestingly, metformin's adverse effects in many diseases all show VDAC1 involvement, suggesting that it is a common factor in metformin-affecting diseases. The findings that metformin has an opposite effect on various diseases are consistent with the fact that VDAC1 controls cell life and death, supporting the idea that it is a target for metformin.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | | | - Marta Di Carlo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
5
|
Emelyanova L, Bai X, Yan Y, Bosnjak ZJ, Kress D, Warner C, Kroboth S, Rudic T, Kaushik S, Stoeckl E, Ross GR, Rizvi F, Tajik AJ, Jahangir A. Biphasic effect of metformin on human cardiac energetics. Transl Res 2021; 229:5-23. [PMID: 33045408 PMCID: PMC10655614 DOI: 10.1016/j.trsl.2020.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 02/01/2023]
Abstract
Metformin is the first-line medication for treatment of type 2 diabetes and has been shown to reduce heart damage and death. However, mechanisms by which metformin protects human heart remain debated. The aim of the study was to evaluate the cardioprotective effect of metformin on cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) and mitochondria isolated from human cardiac tissue. At concentrations ≤2.5 mM, metformin significantly increased oxygen consumption rate (OCR) in the hiPSC-CMs by activating adenosine monophosphate activated protein kinase (AMPK)-dependent signaling and enhancing mitochondrial biogenesis. This effect was abrogated by compound C, an inhibitor of AMPK. At concentrations >5 mM, metformin inhibited the cellular OCR and triggered metabolic reprogramming by enhancing glycolysis and glutaminolysis in the cardiomyocytes. In isolated cardiac mitochondria, metformin did not increase the OCR at any concentrations but inhibited the OCR starting at 1 mM through direct inhibition of electron-transport chain complex I. This was associated with reduction of superoxide production and attenuation of Ca2+-induced mitochondrial permeability transition pore (mPTP) opening in the mitochondria. Thus, in human heart, metformin might improve cardioprotection due to its biphasic effect on mitochondria: at low concentrations, it activates mitochondrial biogenesis via AMPK signaling and increases the OCR; at high concentrations, it inhibits the respiration by directly affecting the activity of complex I, reduces oxidative stress and delays mPTP formation. Moreover, metformin at high concentrations causes metabolic reprogramming by enhancing glycolysis and glutaminolysis. These effects can be a beneficial adjunct to patients with impaired endogenous cardioprotective responses.
Collapse
Affiliation(s)
- Larisa Emelyanova
- Center for Integrative Research on Cardiovascular Aging, Advocate Aurora Research Institute, Milwaukee, Wisconsin.
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yasheng Yan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Zeljko J Bosnjak
- Departments of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David Kress
- Aurora Cardiovascular and Thoracic Services, St. Luke's Medical Center, Advocate Aurora Health Care, Milwaukee, Wisconsin
| | - Catherine Warner
- Center for Integrative Research on Cardiovascular Aging, Advocate Aurora Research Institute, Milwaukee, Wisconsin
| | - Stacie Kroboth
- Aurora Cardiovascular and Thoracic Services, St. Luke's Medical Center, Advocate Aurora Health Care, Milwaukee, Wisconsin
| | - Teodore Rudic
- Center for Integrative Research on Cardiovascular Aging, Advocate Aurora Research Institute, Milwaukee, Wisconsin
| | - Sirisha Kaushik
- Center for Integrative Research on Cardiovascular Aging, Advocate Aurora Research Institute, Milwaukee, Wisconsin
| | - Elizabeth Stoeckl
- Center for Integrative Research on Cardiovascular Aging, Advocate Aurora Research Institute, Milwaukee, Wisconsin
| | - Gracious R Ross
- Center for Integrative Research on Cardiovascular Aging, Advocate Aurora Research Institute, Milwaukee, Wisconsin
| | - Farhan Rizvi
- Center for Integrative Research on Cardiovascular Aging, Advocate Aurora Research Institute, Milwaukee, Wisconsin
| | - A Jamil Tajik
- Aurora Cardiovascular and Thoracic Services, St. Luke's Medical Center, Advocate Aurora Health Care, Milwaukee, Wisconsin
| | - Arshad Jahangir
- Aurora Cardiovascular and Thoracic Services, St. Luke's Medical Center, Advocate Aurora Health Care, Milwaukee, Wisconsin
| |
Collapse
|
6
|
The risk of heart failure associated with the use of noninsulin blood glucose-lowering drugs: systematic review and meta-analysis of published observational studies. BMC Cardiovasc Disord 2014; 14:129. [PMID: 25260374 PMCID: PMC4246471 DOI: 10.1186/1471-2261-14-129] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/22/2014] [Indexed: 01/21/2023] Open
Abstract
Background Patients with type 2 diabetes mellitus (T2DM) are at high risk of heart failure. A summary of the effects of blood glucose-lowering drugs other than glitazones on the risk of heart failure in routine clinical practice is lacking. The objective of this study was to conduct a systematic review and meta-analysis of observational studies on the risk of heart failure when using blood glucose-lowering drugs. Methods We systematically identified and reviewed cohort and case–control studies in which the main exposure of interest was noninsulin blood glucose-lowering medications in patients with T2DM. We searched Medline, Embase, and the Cochrane Library to identify publications meeting prespecified eligibility criteria. The quality of included studies was assessed with the Newcastle-Ottawa Scale and the RTI item bank. Results were combined using fixed and random-effects models when at least 3 independent data points were available for a drug-drug comparison. Results The summary relative risk of heart failure in rosiglitazone users versus pioglitazone users (95% CI) was 1.16 (1.05-1.28) (5 cohort studies). Heterogeneity was present (I2 = 66%). For new users (n = 4) the summary relative risk was 1.21 (1.14-1.30) and the heterogeneity was reduced (I2 = 31%);. The summary relative risk for rosiglitazone versus metformin was 1.36 (95% CI, 1.17-1.59) (n = 3). The summary relative risk (95% CI) of heart failure in sulfonylureas users versus metformin users was 1.17 (95% CI, 1.06-1.29) (5 cohort studies; I2 = 24%) and 1.22 (1.02-1.46) when restricted to new users (2 studies). Information on other comparisons was very scarce. Information on dose and duration of treatment effects was lacking for most comparisons. Few studies accounted for disease severity; therefore, confounding by indication might be present in the majority of the within-study comparisons of this meta-analysis. Conclusions Use of glitazones and sulfonylureas was associated with an increased risk of heart failure compared with metformin use. However, indication bias cannot be ruled out. Ongoing large multidatabase studies will help to evaluate the risk of heart failure in treated patients with diabetes, including those using newer blood glucose-lowering therapies. Electronic supplementary material The online version of this article (doi:10.1186/1471-2261-14-129) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Huang W, Castelino RL, Peterson GM. Metformin usage in type 2 diabetes mellitus: are safety guidelines adhered to? Intern Med J 2014; 44:266-72. [DOI: 10.1111/imj.12369] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/31/2013] [Indexed: 01/25/2023]
Affiliation(s)
- W. Huang
- Unit for Medication Outcome Research and Education; School of Pharmacy; University of Tasmania; Hobart Tasmania Australia
| | - R. L. Castelino
- Unit for Medication Outcome Research and Education; School of Pharmacy; University of Tasmania; Hobart Tasmania Australia
| | - G. M. Peterson
- Unit for Medication Outcome Research and Education; School of Pharmacy; University of Tasmania; Hobart Tasmania Australia
- Faculty of Health Science; University of Tasmania; Hobart Tasmania Australia
| |
Collapse
|