1
|
Luo Y, An C, Zhong K, Zhou P, Li D, Liu H, Guo Q, Wei W, Pan H, Min Z, Li R, Yu Y, Fan Y. Exploring the impacts of senescence on implantation and early embryonic development using totipotent cell-derived blastoids. J Adv Res 2025; 68:115-129. [PMID: 38402947 PMCID: PMC11785586 DOI: 10.1016/j.jare.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024] Open
Abstract
INTRODUCTION Advanced maternal age is associated with reduced implantation and pregnancy rates, yet the underlying mechanisms remain poorly understood, and research models are limited. OBJECTIVES Here, we aim to elucidate the impacts of senescence on implantation ability by employing blastoids to construct a novel research model. METHODS We used a novel three-dimensional system with totipotent blastomere-like cells (TBLCs) to construct TBL-blastoids and established senescence-related embryo models derived from oxidative stress-induced TBLCs. RESULTS Morphological and transcriptomic analyses revealed that TBL-blastoids exhibited characteristic blastocyst morphology, cell lineages, and a higher consistency in developmental rate. TBL-blastoids demonstrated the ability to develop into postimplantation structures in vitro and successfully implanted into mouse uteri, inducing decidualization and forming embryonic tissues. Importantly, senescence impaired the implantation potential of TBL-blastoids, effectively mimicking the impaired implantation ability and reduced pregnancy rates associated with advanced age. Furthermore, analysis of differentially expressed genes (DEGs) in human homologous deciduae revealed enrichment in multiple fertility-related diseases and other complications of pregnancy. The genes implicated in these diseases and the common DEGs identified in the lineage-like cells of the two types of TBL-blastoids and deciduae may represent potential targets for addressing impaired implantation potential. CONCLUSION These results unveiled that TBL blastoids are an improved model for investigating implantation and early postimplantation, offering valuable insights into pregnancy-related disorders in women with advanced age and potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Yuxin Luo
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
| | - Chenrui An
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Ke Zhong
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Ping Zhou
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
| | - Dan Li
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Hui Liu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Qing Guo
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Wei Wei
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Hen Pan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
| | - Zheying Min
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| | - Rong Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China.
| | - Yang Yu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China.
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| |
Collapse
|
2
|
Antinozzi C, Duranti G, Ceci R, Lista M, Sabatini S, Caporossi D, Di Luigi L, Sgrò P, Dimauro I. Hydrogen Peroxide Stimulates Dihydrotestosterone Release in C2C12 Myotubes: A New Perspective for Exercise-Related Muscle Steroidogenesis? Int J Mol Sci 2022; 23:ijms23126566. [PMID: 35743011 PMCID: PMC9223901 DOI: 10.3390/ijms23126566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle is a tissue that has recently been recognized for its ability to produce androgens under physiological conditions. The steroidogenesis process is known to be negatively influenced by reactive oxygen species (ROS) in reproductive Leydig and ovary cells, while their effect on muscle steroidogenesis is still an unexplored field. Muscle cells are continuously exposed to ROS, resulting from both their metabolic activity and the surrounding environment. Interestingly, the regulation of signaling pathways, induced by mild ROS levels, plays an important role in muscle fiber adaptation to exercise, in a process that also elicits a significant modulation in the hormonal response. The aim of the present study was to investigate whether ROS could influence steroidogenesis in skeletal muscle cells by evaluating the release of testosterone (T) and dihydrotestosterone (DHT), as well as the evaluation of the relative expression of the key steroidogenic enzymes 5α-reductase, 3β-hydroxysteroid dehydrogenase (HSD), 17β-HSD, and aromatase. C2C12 mouse myotubes were exposed to a non-cytotoxic concentration of hydrogen peroxide (H2O2), a condition intended to reproduce, in vitro, one of the main stimuli linked to the process of homeostasis and adaptation induced by exercise in skeletal muscle. Moreover, the influence of tadalafil (TAD), a phosphodiesterase 5 inhibitor (PDE5i) originally used to treat erectile dysfunction but often misused among athletes as a "performance-enhancing" drug, was evaluated in a single treatment or in combination with H2O2. Our data showed that a mild hydrogen peroxide exposure induced the release of DHT, but not T, and modulated the expression of the enzymes involved in steroidogenesis, while TAD treatment significantly reduced the H2O2-induced DHT release. This study adds a new piece of information about the adaptive skeletal muscle cell response to an oxidative environment, revealing that hydrogen peroxide plays an important role in activating muscle steroidogenesis.
Collapse
Affiliation(s)
- Cristina Antinozzi
- Endocrinology Unit, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (C.A.); (M.L.); (L.D.L.)
| | - Guglielmo Duranti
- Laboratory of Biochemistry of Movement, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (R.C.); (S.S.)
- Correspondence: (G.D.); (P.S.)
| | - Roberta Ceci
- Laboratory of Biochemistry of Movement, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (R.C.); (S.S.)
| | - Marco Lista
- Endocrinology Unit, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (C.A.); (M.L.); (L.D.L.)
| | - Stefania Sabatini
- Laboratory of Biochemistry of Movement, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (R.C.); (S.S.)
| | - Daniela Caporossi
- Laboratory of Biology and Human Genetic, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (D.C.); (I.D.)
| | - Luigi Di Luigi
- Endocrinology Unit, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (C.A.); (M.L.); (L.D.L.)
| | - Paolo Sgrò
- Endocrinology Unit, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (C.A.); (M.L.); (L.D.L.)
- Correspondence: (G.D.); (P.S.)
| | - Ivan Dimauro
- Laboratory of Biology and Human Genetic, Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro De Bosis 6, 00135 Roma, Italy; (D.C.); (I.D.)
| |
Collapse
|
3
|
Zhao F, Wu L, Wang Y, Liu L, Yang F, Sun Y, Jiao X, Bao L, Chen P, Liang Q, Shi B. Dihydrotestosterone regulates oxidative stress and immunosuppressive cytokines in a female BALB/c mouse model of Graves' disease. Autoimmunity 2019; 52:117-125. [PMID: 31134819 DOI: 10.1080/08916934.2019.1621857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background: Graves' disease (GD) is an autoimmune disease that affects more women than men. In our previous study, a potent bioactive androgen, 5α-dihydrotestosterone (DHT) showed a protective effect against GD in female BALB/c mice. Evidence indicates that abnormal oxidative stress and immunosuppressive cytokines (TGF-β, IL-35) play critical roles in the pathogenesis and development of GD. The purpose of this research is to measure these cytokines and oxidative stress markers to explore potential protective mechanisms of DHT in a BALB/c mouse model of GD. Methods: GD was induced in female BALB/c mice by intramuscular injection of an adenovirus expressing the A-subunit of the TSH receptor (Ad-TSHR289). DHT or a matching placebo was injected every 3 days. Mice were sacrificed four weeks after the third virus immunization to obtain blood, thyroid and spleen for further analysis. Results: Thyroid hormones were significantly reduced in DHT treated GD mice. In addition, DHT attenuated thyroid oxidative injuries in GD mice, as shown by decreased total antioxidation capability (TAOC), superoxide dismutase (SOD) and the level of malondialdehyde (MDA). The levels of immunosuppressive cytokines (TGF-β, IL-35) in DHT group were significant higher compared with the GD group. Conclusions: The results demonstrated that DHT could reduce the severity of GD in female BALB/c mice by regulating oxidative stress. The upregulation of immunosuppressive cytokines might be another important protective mechanism.
Collapse
Affiliation(s)
- Fengyi Zhao
- a Department of Endocrinology, The First Affiliated Hospital of Xi'an , Jiaotong University Health Science Center , Xi'an , China
| | - Liping Wu
- a Department of Endocrinology, The First Affiliated Hospital of Xi'an , Jiaotong University Health Science Center , Xi'an , China
| | - Yue Wang
- a Department of Endocrinology, The First Affiliated Hospital of Xi'an , Jiaotong University Health Science Center , Xi'an , China
| | - Lianye Liu
- b Department of Nephrology and Endocrinology , Weinan Central Hospital , Weinan , China
| | - Fei Yang
- a Department of Endocrinology, The First Affiliated Hospital of Xi'an , Jiaotong University Health Science Center , Xi'an , China
| | - Yushi Sun
- a Department of Endocrinology, The First Affiliated Hospital of Xi'an , Jiaotong University Health Science Center , Xi'an , China
| | - Xiang Jiao
- a Department of Endocrinology, The First Affiliated Hospital of Xi'an , Jiaotong University Health Science Center , Xi'an , China
| | - Lingyu Bao
- a Department of Endocrinology, The First Affiliated Hospital of Xi'an , Jiaotong University Health Science Center , Xi'an , China
| | - Pu Chen
- a Department of Endocrinology, The First Affiliated Hospital of Xi'an , Jiaotong University Health Science Center , Xi'an , China
| | - Qiangrong Liang
- c Department of Biomedical Science, New York Institute of Technology , college of Osteopathic Medicine , Old Westbury , New York , USA
| | - Bingyin Shi
- a Department of Endocrinology, The First Affiliated Hospital of Xi'an , Jiaotong University Health Science Center , Xi'an , China
| |
Collapse
|
4
|
Mohammed OJ, Pratten MK. Micromass Methods for the Evaluation of Developmental Toxicants. Methods Mol Biol 2019; 1965:49-72. [PMID: 31069668 DOI: 10.1007/978-1-4939-9182-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Chick embryonic heart has recently been utilized as a model to create a micromass (MM) culturing system. The aim was to overcome the ethical barriers arising from testing the embryotoxicity of chemicals using human embryonic cells. The system represents a valuable tool to study the ability of chemicals to interfere with various embryonic developmental processes such as cellular communication, differentiation, cellular activity, and proliferation, where the disturbance any of them could result in maldevelopment. The system can also be utilized to investigate ROS production and expression of several transmembrane proteins to study their roles in chemical-induced teratogenicity or embryotoxicity.
Collapse
Affiliation(s)
- Omar J Mohammed
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, QMC, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Margaret K Pratten
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, QMC, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
5
|
Lin SY, Lin CL, Chang CH, Wu HC, Lin CH, Kao C. Risk of age-related macular degeneration in patients with prostate cancer: a nationwide, population-based cohort study. Ann Oncol 2017; 28:2575-2580. [DOI: 10.1093/annonc/mdx402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
6
|
Mohammed OJ, Latif ML, Pratten MK. Diabetes-induced effects on cardiomyocytes in chick embryonic heart micromass and mouse embryonic D3 differentiated stem cells. Reprod Toxicol 2017; 69:242-253. [PMID: 28286266 DOI: 10.1016/j.reprotox.2017.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 11/16/2022]
Abstract
Diabetes mellitus during pregnancy is a considerable medical challenge, since it is related to augmented morbidity and mortality concerns for both the fetus and the pregnant woman. Records show that the etiology of diabetic embryopathy is complicated, as many teratological factors might be involved in the mechanisms of diabetes mellitus-induced congenital malformation. In this study, the potential cardiotoxic effect of hyperglycemia with hyperketonemia was investigated by using two in vitro models; primary chick embryonic cardiomyocytes and stem cell derived cardiomyocytes, where adverse effects were recorded in both systems. The cells were evaluated by changes in beating activity, cell activity, protein content, ROS production, DNA damage and differentiating stem cell migration. The diabetic formulae used produced an increase in DNA damage and a decline in cell migration in mouse embryonic stem cells. These results provide an additional insight into adverse effects during gestational diabetes mellitus and a recommendation for expectant mothers and maternity staff to monitor glycaemic levels months ahead of conception. This study also supports the recommendation of using antioxidants during pregnancy to prevent DNA damage by the production of ROS, which might result in heart defects as well as other developmental anomalies.
Collapse
Affiliation(s)
- Omar J Mohammed
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Muhammad Liaque Latif
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Margaret K Pratten
- School of Life Sciences, Faculty of Medicine and Health Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
7
|
The protective mechanism of quercetin-3-O-β-D-glucuronopyranoside (QGC) in H2O2-induced injury of feline esophageal epithelial cells. Arch Pharm Res 2016; 39:1324-34. [PMID: 27522656 DOI: 10.1007/s12272-016-0808-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/01/2016] [Indexed: 12/27/2022]
Abstract
Quercetin-3-O-β-D-glucuronopyranoside (QGC) is a flavonoid glucoside extracted from Rumex Aquaticus. Recent studies have shown that QGC exhibits anti-inflammatory, anti-oxidateve effect in vivo and cytoprotective effect in vitro. Reactive oxygen species (ROS), at low concentration, play role as a primary signal or second messenger, however, at high concentration, ROS are cytotoxic. In this study, we investigated the protective mechanism of QGC in H2O2-induced injury of Feline Esophageal Epithelial Cells. Primary-cultured feline esophagus cells were identified by an indirect immunofluorescent staining method using a cytokeratin monoclonal antibody. Cell viability was determined by the conventional MTT reduction assay. Western blot analysis was performed with specific antibodies to investigate the activation of MAPKs, NF-κB, and IκB-α, and the expression of COX-2. When the cells were exposed to 600 μM H2O2 medium for 24 h, cell viability decreased to 54 %. However, when cells were pretreated with 50-150 μM QGC for 12 h, the viability of cells exposed to H2O2 significantly increased in the dose dependent manner. QGC (50 μM, 12 h) also inhibited the expression of COX-2 induced by 10 μM H2O2 for 24 h. We found that treatment of H2O2 activated p38 MAPK and JNK, but not ERK. However QGC inhibited the H2O2-induced p38 MAPK and JNK phosphorylation. In addition, NF-κB was activated by H2O2 and translocated into the nucleus, but QGC inhibited the activation of NF-κB by blocking degradation of IκB. These data suggest that QGC reduces H2O2-induced COX-2 production by modulating the p38 MAPK, JNK, NF-κB signal pathway in feline esophageal epithelial cells.
Collapse
|
8
|
Huang CK, Luo J, Lee SO, Chang C. Concise review: androgen receptor differential roles in stem/progenitor cells including prostate, embryonic, stromal, and hematopoietic lineages. Stem Cells 2015; 32:2299-308. [PMID: 24740898 DOI: 10.1002/stem.1722] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 01/07/2023]
Abstract
Stem/progenitor (S/P) cells are special types of cells that have the ability to generate tissues throughout their entire lifetime and play key roles in the developmental process. Androgen and the androgen receptor (AR) signals are the critical determinants in male gender development, suggesting that androgen and AR signals might modulate the behavior of S/P cells. In this review, we summarize the AR effects on the behavior of S/P cells, including self-renewal, proliferation, apoptosis, and differentiation in normal S/P cells, as well as proliferation, invasion, and self-renewal in prostate cancer S/P cells. AR plays a protective role in the oxidative stress-induced apoptosis in embryonic stem cells. AR inhibits the self-renewal of embryonic stem cells, bone marrow stromal cells, and prostate S/P cells, but promotes their differentiation except for adipogenesis. However, AR promotes the proliferation of hematopoietic S/P cells and stimulates hematopoietic lineage differentiation. In prostate cancer S/P cells, AR suppresses their self-renewal, metastasis, and invasion. Together, AR differentially influences the characteristics of normal S/P cells and prostate cancer S/P cells, and targeting AR might improve S/P cell transplantation therapy, especially in embryonic stem cells and bone marrow stromal cells.
Collapse
Affiliation(s)
- Chiung-Kuei Huang
- Departments of Pathology, Urology, Radiation Oncology, the George Whipple Lab for Cancer Research, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | | |
Collapse
|
9
|
Carbamazepine toxic effects in chick cardiomyocyte micromass culture and embryonic stem cell derived cardiomyocyte systems – Possible protective role of antioxidants. Reprod Toxicol 2014; 50:49-59. [DOI: 10.1016/j.reprotox.2014.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/01/2014] [Accepted: 10/07/2014] [Indexed: 11/23/2022]
|
10
|
Qureshi WMS, Latif ML, Parker TL, Pratten MK. Lithium carbonate teratogenic effects in chick cardiomyocyte micromass system and mouse embryonic stem cell derived cardiomyocyte--possible protective role of myo-inositol. Reprod Toxicol 2014; 46:106-14. [PMID: 24703859 DOI: 10.1016/j.reprotox.2014.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 02/17/2014] [Accepted: 03/18/2014] [Indexed: 11/15/2022]
Abstract
The drug lithium carbonate (Li2CO3) use during pregnancy increases the possibility of cardiovascular anomalies. The earlier studies confirm its phosphatidylinositol cycle (PI) inhibition and Wnt pathways mimicking properties, which might contribute to its teratogenic effects. In this study the toxic effects of Li2CO3 in chick embryonic cardiomyocyte micromass system (MM) and embryonic stem cell derived cardiomyocyte (ESDC) were evaluated, with possible protective role of myo-inositol. In MM system the Li2CO3 did not alter the toxicity estimation endpoints, whereas in ESDC system the cardiomyocytes contractile activity stopped at 1500 μM and above with significant increase in total cellular protein contents. In ESDC system when myo-inositol was added along with Li2CO3 to continue PI cycle, the contractile activity was recovered with decreased protein content. The lithium toxic effects depend on the role of PI cycle at particular stage of cardiogenesis, while relation between myo-inositol and reduced cellular protein contents remains unknown.
Collapse
Affiliation(s)
- W M Shaikh Qureshi
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottinghamshire NG7 2UH, UK.
| | - M L Latif
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottinghamshire NG7 2UH, UK.
| | - T L Parker
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottinghamshire NG7 2UH, UK.
| | - M K Pratten
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottinghamshire NG7 2UH, UK.
| |
Collapse
|
11
|
Liu FT, Xu SM, Xiang ZH, Li XN, Li J, Yuan HB, Sun XJ. Molecular hydrogen suppresses reactive astrogliosis related to oxidative injury during spinal cord injury in rats. CNS Neurosci Ther 2014; 20:778-86. [PMID: 24685114 DOI: 10.1111/cns.12258] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/28/2014] [Accepted: 03/02/2014] [Indexed: 12/16/2022] Open
Abstract
AIMS Spinal cord injury (SCI) can induce excessive astrocyte activation. Hydrogen has been deemed as a novel antioxidant. We investigated whether molecular hydrogen could act as an antiastrogliosis agent during SCI and oxidative injury in experimental rats and cultured astrocytes. METHODS Hydrogen-rich saline (HS, 8 mL/kg, i.p.) was injected every 12 h after SCI in rats. The expression of STAT3, p-STAT3, and glial fibrillary acidic protein (GFAP); the release of IL-1β, IL-6, and TNF-α; and astrogliosis, along with the BBB score, were evaluated. Culturing astrocytes with hydrogen-rich medium, the intracellular reactive oxygen species (ROS), astrogliosis, and the release of proinflammatory cytokines were assessed after H2O2-induced injury. RESULTS In the HS group, the expression of STAT3, p-STAT3, and GFAP and the proinflammatory cytokines were decreased in local spinal cord on postoperation day (POD) 3; on PODs 7 and 14, reactive astrogliosis was suppressed, and the locomotor function was also improved. Furthermore, hydrogen-rich medium attenuated the intracellular production of ROS (especially HO•), astrogliosis, and the secretion of proinflammatory cytokines in astrocytes 12 h after H2O2-induced injury. CONCLUSIONS Molecular hydrogen could suppress reactive astrogliosis after contusive SCI and reduce the release of proinflammatory cytokines produced by active astrocytes related to oxidative injury. Thus, molecular hydrogen is potential to be a neuroprotective agent.
Collapse
Affiliation(s)
- Fang-Ting Liu
- Department of Anesthesiology, Neuroscience Research Centre, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Muhammad H, Schminke B, Miosge N. Current concepts in stem cell therapy for articular cartilage repair. Expert Opin Biol Ther 2013; 13:541-8. [PMID: 23320740 DOI: 10.1517/14712598.2013.758707] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Hyaline articular cartilage is the connective tissue responsible for frictionless joint movement. Its degeneration ultimately results in complete loss of joint function in the late stages of osteoarthritis. Intrinsic repair is compromised, and cartilage tissue regeneration is difficult. However, new options are available to repair cartilage tissue by applying ESCs, MSCs and CPCs. AREAS COVERED In this review, the authors shed light on the different concepts currently under investigation for cartilage repair. EXPERT OPINION So far, there is no way to derive a chondrogenic lineage from stem cells that forms functional hyaline cartilage tissue in vivo. One alternative might be to enhance the chondrogenic potential of repair cells, which are already present in diseased cartilage tissue. CPCs found in diseased cartilage tissue in situ are biologically driven toward the osteochondrogenic lineage and can be directed toward chondrogenesis at least in vitro.
Collapse
Affiliation(s)
- Hayat Muhammad
- Georg August University, Tissue Regeneration Work Group, Department of Prosthodontics, Goettingen, Germany
| | | | | |
Collapse
|
13
|
Lim JC, Park SY, Nam Y, Nguyen TT, Sohn UD. The Protective Effect of Eupatilin against Hydrogen Peroxide-Induced Injury Involving 5-Lipoxygenase in Feline Esophageal Epithelial Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:313-20. [PMID: 23118554 PMCID: PMC3484515 DOI: 10.4196/kjpp.2012.16.5.313] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/14/2012] [Accepted: 09/02/2012] [Indexed: 01/27/2023]
Abstract
In this study, we focused to identify whether eupatilin (5,7-dihydroxy-3',4',6-trimethoxyflavone), an extract from Artemisia argyi folium, prevents H2O2-induced injury of cultured feline esophageal epithelial cells. Cell viability was measured by the conventional MTT reduction assay. Western blot analysis was performed to investigate the expression of 5-lipoxygenase by H2O2 treatment in the absence and presence of inhibitors. When cells were exposed to 600 µM H2O2 for 24 hours, cell viability was decreased to 40%. However, when cells were pretreated with 25~150 µM eupatilin for 12 hours, viability was significantly restored in a concentration-dependent manner. H2O2-treated cells were shown to express 5-lipoxygenase, whereas the cells pretreated with eupatilin exhibited reduction in the expression of 5-lipoxygenase. The H2O2-induced increase of 5-lipoxygenase expression was prevented by SB202190, SP600125, or NAC. We further demonstrated that the level of leukotriene B4 (LTB4) was also reduced by eupatilin, SB202190, SP600125, NAC, or nordihydroguaiaretic acid (a lipoxygenase inhibitor) pretreatment. H2O2 induced the activation of p38MAPK and JNK, this activation was inhibited by eupatilin. These results indicate that eupatilin may reduce H2O2-induced cytotoxicity, and 5-lipoxygenase expression and LTB4 production by controlling the p38 MAPK and JNK signaling pathways through antioxidative action in feline esophageal epithelial cells.
Collapse
Affiliation(s)
- Jae Chun Lim
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | | | | | | | | |
Collapse
|
14
|
Chen Z, Jin K, Gao L, Lou G, Jin Y, Yu Y, Lou Y. Anti-tumor effects of bakuchiol, an analogue of resveratrol, on human lung adenocarcinoma A549 cell line. Eur J Pharmacol 2010; 643:170-9. [DOI: 10.1016/j.ejphar.2010.06.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 05/20/2010] [Accepted: 06/16/2010] [Indexed: 02/05/2023]
|
15
|
Xu ZR, Hu L, Cheng LF, Qian Y, Yang YM. Dihydrotestosterone protects human vascular endothelial cells from H(2)O(2)-induced apoptosis through inhibition of caspase-3, caspase-9 and p38 MAPK. Eur J Pharmacol 2010; 643:254-9. [PMID: 20599910 DOI: 10.1016/j.ejphar.2010.06.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 05/28/2010] [Accepted: 06/22/2010] [Indexed: 10/19/2022]
Abstract
Oxidative stress is proved to be harmful to the vascular endothelial cells which are important in preventing the formation and progression of atheromatous plaque. This study was designed to investigate the protective effect and potential mechanisms of dihydrotestosterone (DHT) against H(2)O(2)-induced apoptosis of human umbilical vein endothelial cells (ECV-304). ECV-304 cells were pretreated with different concentrations of DHT (0.01, 0.1 and 1 microM) for 2h, followed by exposure to 100 microM H(2)O(2) for 18h. 3-(4,5-dimethylthiazol-2yl-)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to evaluate cell viability. To detect apoptosis, the cells were assessed by morphologic examination and Annexin V-propidium iodide double staining with flow cytometry. Finally, the expression of caspase-3, caspase-9 and phospho p38 MAPK was assayed by Western blot to investigate the possible molecular mechanisms. We found that H(2)O(2) treatment for 18h significantly decrease the viability of ECV-304 cells characterized by a high percentage of apoptotic cells. DHT could antagonize the apoptosis inducing effect of H(2)O(2) in a dose-dependent manner. Consistently, DHT also significantly inhibit the expression of caspase-3, caspase-9 and phospho p38 MAPK induced by H(2)O(2). In summary, pretreatment with DHT can inhibit apoptosis of ECV-304 cells induced by H(2)O(2). The protective effect of DHT was associated with the inhibition of caspase-3, caspase-9 and phospho p38 MAPK expression.
Collapse
Affiliation(s)
- Zhe-rong Xu
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|