1
|
Cook M, Hensley-McBain T, Grindeland A. Mouse models of chronic wasting disease: A review. FRONTIERS IN VIROLOGY 2023. [DOI: 10.3389/fviro.2023.1055487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Animal models are essential tools for investigating and understanding complex prion diseases like chronic wasting disease (CWD), an infectious prion disease of cervids (elk, deer, moose, and reindeer). Over the past several decades, numerous mouse models have been generated to aid in the advancement of CWD knowledge and comprehension. These models have facilitated the investigation of pathogenesis, transmission, and potential therapies for CWD. Findings have impacted CWD management and disease outcomes, though much remains unknown, and a cure has yet to be discovered. Studying wildlife for CWD effects is singularly difficult due to the long incubation time, subtle clinical signs at early stages, lack of convenient in-the-field live testing methods, and lack of reproducibility of a controlled laboratory setting. Mouse models in many cases is the first step to understanding the mechanisms of disease in a shortened time frame. Here, we provide a comprehensive review of studies with mouse models in CWD research. We begin by reviewing studies that examined the use of mouse models for bioassays for tissues, bodily fluids, and excreta that spread disease, then address routes of infectivity and infectious load. Next, we delve into studies of genetic factors that influence protein structure. We then move on to immune factors, possible transmission through environmental contamination, and species barriers and differing prion strains. We conclude with studies that make use of cervidized mouse models in the search for therapies for CWD.
Collapse
|
2
|
Zhang L, Zhou Z, Zhai W, Pang J, Mo Y, Yang G, Qu Z, Hu Y. Safflower yellow attenuates learning and memory deficits in amyloid β-induced Alzheimer's disease rats by inhibiting neuroglia cell activation and inflammatory signaling pathways. Metab Brain Dis 2019; 34:927-939. [PMID: 30830599 DOI: 10.1007/s11011-019-00398-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
Safflower yellow (SY) is an aqueous extract of natural safflower. Our laboratory has reported protective effects of alleviating memory impairment with SY in a transgentic mouse model of Alzheimer's disease. The possible beneficial effects of SY on amyloid-β-induced neuroinflammation in dementia remain unclarified. This study we hypothesize that astrocytes and microglia may cause amyloid-β deposition and produce a neuroinflammatory response, aims to explain the role and mechanism of SY in regulating glial activation and reducing Aβ deposition in Aβ1-42 induced rat model. Wistar rats were treated with SY for one month after bilateral hippocampal injection of aggregated Aβ1-42; behavioral tests were performed to demonstrate the amelioration of cognitive function. After that, the contents of iNOS, IL-1β, IL-6, and TNF-α in AD brain was detected. Western blot and real-time PCR were used to detect the M1 and M2-associated markers to demonstrate the activation of microglia. The conducted experiments have revealed that SY could strengthen spatial learning and memory ability of dementia rats, decrease the contents of iNOS, IL-1β, IL-6, and TNF-α and depress the activation of glial cells. Moreover, the SY treatment inhibited the M1 release of pro-inflammatory cytokines (iNOS and CD86), increased the expression of arginase-1, CD206, and YM-1 thereby reduced inflammation in model rats. Thus our results indicated that SY has very important theoretical and clinical value for the research and development of Chinese medicine for the treatment of AD.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Zhangjiuzhi Zhou
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Wei Zhai
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Jie Pang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Yuyan Mo
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Guang Yang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Zuwei Qu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Yanli Hu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China.
| |
Collapse
|
3
|
Abdelaziz DH, Thapa S, Brandon J, Maybee J, Vankuppeveld L, McCorkell R, Schätzl HM. Recombinant prion protein vaccination of transgenic elk PrP mice and reindeer overcomes self-tolerance and protects mice against chronic wasting disease. J Biol Chem 2018; 293:19812-19822. [PMID: 30397182 PMCID: PMC6314114 DOI: 10.1074/jbc.ra118.004810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/29/2018] [Indexed: 12/17/2022] Open
Abstract
Chronic wasting disease (CWD) is a fatal neurodegenerative disease that affects cervids in North America and now Europe. No effective measures are available to control CWD. We hypothesized that active vaccination with homologous and aggregation-prone recombinant prion protein (PrP) could overcome self-tolerance and induce autoantibody production against the cellular isoform of PrP (PrPC), which would be protective against CWD infection from peripheral routes. Five groups of transgenic mice expressing elk PrP (TgElk) were vaccinated with either the adjuvant CpG alone or one of four recombinant PrP immunogens: deer dimer (Ddi); deer monomer (Dmo); mouse dimer (Mdi); and mouse monomer (Mmo). Mice were then challenged intraperitoneally with elk CWD prions. All vaccinated mice developed ELISA-detectable antibody titers against PrP. Importantly, all four vaccinated groups survived longer than the control group, with the Mmo-immunized group exhibiting 60% prolongation of mean survival time compared with the control group (183 versus 114 days post-inoculation). We tested for prion infection in brain and spleen of all clinically sick mice. Notably, the attack rate was 100% as revealed by positive CWD signals in all tested tissues when assessed with Western blotting, real-time quaking-induced conversion, and immunohistochemistry. Our pilot study in reindeer indicated appreciable humoral immune responses to Mdi and Ddi immunogens, and the post-immune sera from the Ddi-vaccinated reindeer mitigated CWD propagation in a cell culture model (CWD-RK13). Taken together, our study provides very promising vaccine candidates against CWD, but further studies in cervids are required to investigate vaccine efficacy in the natural CWD hosts.
Collapse
Affiliation(s)
- Dalia H Abdelaziz
- From the Department of Comparative Biology and Experimental Medicine and.,the Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt.,the Calgary Prion Research Unit, University of Calgary, Calgary, Alberta T2N 4Z6, Canada and
| | - Simrika Thapa
- From the Department of Comparative Biology and Experimental Medicine and.,the Calgary Prion Research Unit, University of Calgary, Calgary, Alberta T2N 4Z6, Canada and
| | - Jenna Brandon
- From the Department of Comparative Biology and Experimental Medicine and
| | - Justine Maybee
- From the Department of Comparative Biology and Experimental Medicine and
| | | | - Robert McCorkell
- From the Department of Comparative Biology and Experimental Medicine and
| | - Hermann M Schätzl
- From the Department of Comparative Biology and Experimental Medicine and .,the Calgary Prion Research Unit, University of Calgary, Calgary, Alberta T2N 4Z6, Canada and
| |
Collapse
|
4
|
Madsen-Bouterse SA, Schneider DA, Zhuang D, Dassanayake RP, Balachandran A, Mitchell GB, O'Rourke KI. Primary transmission of chronic wasting disease versus scrapie prions from small ruminants to transgenic mice expressing ovine or cervid prion protein. J Gen Virol 2016; 97:2451-2460. [PMID: 27393736 PMCID: PMC5042132 DOI: 10.1099/jgv.0.000539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/06/2016] [Indexed: 11/18/2022] Open
Abstract
Development of mice expressing either ovine (Tg338) or cervid (TgElk) prion protein (PrP) have aided in characterization of scrapie and chronic wasting disease (CWD), respectively. Experimental inoculation of sheep with CWD prions has demonstrated the potential for interspecies transmission but, infection with CWD versus classical scrapie prions may be difficult to differentiate using validated diagnostic platforms. In this study, mouse bioassay in Tg338 and TgElk was utilized to evaluate transmission of CWD versus scrapie prions from small ruminants. Mice (≥5 per homogenate) were inoculated with brain homogenates from clinically affected sheep or goats with naturally acquired classical scrapie, white-tailed deer with naturally acquired CWD (WTD-CWD) or sheep with experimentally acquired CWD derived from elk (sheep-passaged-CWD). Survival time (time to clinical disease) and attack rates (brain accumulation of protease resistant PrP, PrPres) were determined. Inoculation with classical scrapie prions resulted in clinical disease and 100 % attack rates in Tg338, but no clinical disease at endpoint (>300 days post-inoculation, p.i.) and low attack rates (6.8 %) in TgElk. Inoculation with WTD-CWD prions yielded no clinical disease or brain PrPres accumulation in Tg338 at endpoint (>500 days p.i.), but rapid onset of clinical disease (~121 days p.i.) and 100 % attack rate in TgElk. Sheep-passaged-CWD resulted in transmission to both mouse lines with 100 % attack rates at endpoint in Tg338 and an attack rate of ~73 % in TgElk with some culled due to clinical disease. These primary transmission observations demonstrate the potential of bioassay in Tg338 and TgElk to help differentiate possible infection with CWD versus classical scrapie prions in sheep and goats.
Collapse
Affiliation(s)
- Sally A. Madsen-Bouterse
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
| | - David A. Schneider
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA 99164-6630, USA
| | - Dongyue Zhuang
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA 99164-6630, USA
| | - Rohana P. Dassanayake
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
| | - Aru Balachandran
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection, Agency, Ottawa Laboratory–Fallowfield, Ottawa, Ontario, Canada
| | - Gordon B. Mitchell
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection, Agency, Ottawa Laboratory–Fallowfield, Ottawa, Ontario, Canada
| | - Katherine I. O'Rourke
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA 99164-6630, USA
| |
Collapse
|