1
|
Jeong H, Eo Y, Lee D, Jang G, Min KC, Choi AK, Won H, Cho J, Kang SC, Lee C. Comparative Genomic and Biological Investigation of NADC30- and NADC34-Like PRRSV Strains Isolated in South Korea. Transbound Emerg Dis 2025; 2025:9015349. [PMID: 40302751 PMCID: PMC12016814 DOI: 10.1155/tbed/9015349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/30/2024] [Indexed: 05/02/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a globally endemic, costly swine arterivirus with wide genetic and antigenic variations, leading to the frequent appearance of novel virulent strains that hampers PRRSV control. Recently, NADC30-like (lineage 1C, L1C) and NADC34-like (lineage 1A, L1A) PRRSV strains were reported to be prevalent in mainland South Korea and became the main epidemic strains persistently attributed to PRRSV outbreaks nationwide, raising great concern in the domestic pork industry. Although the genotypic and pathotypic variability of NADC30- and NADC34-like viruses has been explored in the United States and China, their genomic and biological characteristics have been scarcely studied in South Korea. Here, NADC34-like GNU-2353 and NADC30-like GNU-2377 strains were independently identified from vaccinated swine herds experiencing high piglet mortality. Whole-genome sequencing and phylogenetic analysis revealed that GNU-2353 and GNU-2377 clustered into sublineages L1A (NADC34-like) and L1C (NADC30-like), respectively, sharing high genomic homology with their corresponding lineage-representative strains and harboring the same molecular signatures of continuous 100 and discontinuous 131 amino acid deletions in the nsp2-coding region, respectively. Recombination detection indicated that GNU-2353 and GNU-2377 were recombinants and evolved through natural interlineage recombination between NADC34-like (L1A, major parent) or NADC30-like (L1C, major parent) and RespPRRS modified live virus (MLV)-like (lineage 5, minor parent) strains, respectively. Both viruses displayed homogenous growth kinetics but replicated faster than the prototype VR-2332 in a porcine alveolar macrophage cell line (PAM-KNU). The transcriptional profiles of immune response genes in infected PAM-KNU cells varied between the isolates and VR-2332; particularly, interleukin-10 expression was dramatically upregulated in cells infected with GNU-2353 and GNU-2377. Piglets with GNU-2353 and GNU-2377 infection had high fever; weight loss; increased viremia and nasal shedding; viral distribution in various tissues; thymic atrophy; and apparent macroscopic and microscopic lung lesions, including interstitial pneumonia and viral colonization, compared with control piglets, suggesting that both isolates were virulent to pigs. Remarkably, GNU-2353 caused higher fever, mortality rate (40%) with cyanosis, viremia, and viral shedding within 2 weeks and significantly higher viral loads in several organs than GNU-2377 infection. Thus, NADC34-like GNU-2353 was more pathogenic than NADC30-like GNU-2377. Our findings provide insights into the current epizootic circumstance of NADC30- and NADC34-like PRRSV in South Korea and can aid in tailoring improved control strategies.
Collapse
Affiliation(s)
- Haemin Jeong
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Youngjoon Eo
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
- Nawoo Veterinary Group, Yangsan 50573, Republic of Korea
| | - Duri Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Guehwan Jang
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyeng-Cheol Min
- ChoongAng Vaccine Laboratories, Daejeon 34055, Republic of Korea
| | - An Kook Choi
- ChoongAng Vaccine Laboratories, Daejeon 34055, Republic of Korea
| | - Hokeun Won
- ChoongAng Vaccine Laboratories, Daejeon 34055, Republic of Korea
| | - Jungjoon Cho
- SoJung Animal Hospital, Yesan 32416, Republic of Korea
| | | | - Changhee Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
2
|
Lee MA, Jayaramaiah U, You SH, Shin EG, Song SM, Ju L, Kang SJ, Hyun BH, Lee HS. Molecular Characterization of Porcine Reproductive and Respiratory Syndrome Virus in Korea from 2018 to 2022. Pathogens 2023; 12:757. [PMID: 37375447 DOI: 10.3390/pathogens12060757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an endemic disease in the Republic of Korea. Surveillance of PRRS virus (PRRSV) types is critical to tailor control measures. This study collected 5062 serum and tissue samples between 2018 and 2022. Open reading frame 5 (ORF5) sequences suggest that subgroup A (42%) was predominant, followed by lineage 1 (21%), lineage 5 (14%), lineage Korea C (LKC) (9%), lineage Korea B (LKB) (6%), and subtype 1C (5%). Highly virulent lineages 1 (NADC30/34/MN184) and 8 were also detected. These viruses typically mutate or recombine with other viruses. ORF5 and non-structural protein 2 (NSP2) deletion patterns were less variable in the PRRSV-1. Several strains belonging to PRRSV-2 showed differences in NSP2 deletion and ORF5 sequences. Similar vaccine-like isolates to the PRRSV-1 subtype 1C and PRRSV-2 lineage 5 were also found. The virus is evolving independently in the field and has eluded vaccine protection. The current vaccine that is used in Korea offers only modest or limited heterologous protection. Ongoing surveillance to identify the current virus strain in circulation is necessary to design a vaccine. A systemic immunization program with region-specific vaccinations and stringent biosecurity measures is required to reduce PRRSV infections in the Republic of Korea.
Collapse
Affiliation(s)
- Min-A Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Usharani Jayaramaiah
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Su-Hwa You
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Eun-Gyeong Shin
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Seung-Min Song
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Lanjeong Ju
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Seok-Jin Kang
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Bang-Hun Hyun
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| | - Hyang-Sim Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin-ro, Gimcheon-si 39660, Republic of Korea
| |
Collapse
|
3
|
Shin GE, Park JY, Lee KK, Ko MK, Ku BK, Park CK, Jeoung HY. Genetic diversity of porcine reproductive and respiratory syndrome virus and evaluation of three one-step real-time RT-PCR assays in Korea. BMC Vet Res 2022; 18:327. [PMID: 36042510 PMCID: PMC9429472 DOI: 10.1186/s12917-022-03407-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) has caused huge economic losses in the global swine industry. Frequent genetic variations in this virus cause difficulties in controlling and accurately diagnosing PRRSV. Methods In this study, we investigated the genetic characteristics of PRRSV-1 and PRRSV-2 circulating in Korea from January 2018 to September 2021 and evaluated three one-step real-time reverse transcription polymerase chain reaction (RT-PCR) assays. Results A total of 129 lung samples were collected, consisting of 47 samples for PRRSV-1, 62 samples for PRRSV-2, and 20 PRRSV-negative samples. Nucleotide sequence analysis of open reading frames (ORFs) 5, ORF6, and ORF7 genes from PRRSV samples showed that PRRSV-1 belonged to subgroup A (43/47, 91.49%) and subgroup C (4/47, 8.51%), whereas PRRSV-2 was classified as lineage 1 (25/62, 40.32%), Korean lineage (Kor) C (13/62, 20.97%), Kor B (10/62, 16.13%), lineage 5 (9/62, 14.52%), and Kor A (5/62, 8.06%). Amino acid sequence analysis showed that the neutralizing epitope and T cell epitope of PRRSV-1, and the decoy epitope region and hypervariable regions of PRRSV-2 had evolved under positive selection pressure. In particular, the key amino acid substitutions were found at positions 102 and 104 of glycoprotein 5 (GP5) in some PRRSV-2, and at positions 10 and 70 of membrane protein (M) in most PRRSV-2. In addition, one-step real-time RT-PCR assays, comprising two commercial tests and one test recommended by the World Organization for Animal Health (OIE), were evaluated. Conclusion The results revealed that two of the real-time RT-PCR assays had high sensitivities and specificities, whereas the real-time RT-PCR assay of the OIE had low sensitivity due to mismatches between nucleotides of Korean PRRSVs and forward primers. In this study, we genetically characterized recent PRRSV occurrences and evaluated three one-step real-time RT-PCR assays used in Korea. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03407-0.
Collapse
Affiliation(s)
- Go-Eun Shin
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Korea.,College of Veterinary Medicine, Kyungbuk National University, 80, Daehak-ro, Daegu, 41566, Korea
| | - Ji-Young Park
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Korea
| | - Kyoung-Ki Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Korea
| | - Mi-Kyeong Ko
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Korea
| | - Bok-Kyung Ku
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine, Kyungbuk National University, 80, Daehak-ro, Daegu, 41566, Korea.
| | - Hye-Young Jeoung
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Korea.
| |
Collapse
|
4
|
Park J, Choi S, Jeon JH, Lee KW, Lee C. Novel lineage 1 recombinants of porcine reproductive and respiratory syndrome virus isolated from vaccinated herds: genome sequences and cytokine production profiles. Arch Virol 2020; 165:2259-2277. [PMID: 32699981 DOI: 10.1007/s00705-020-04743-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/18/2020] [Indexed: 01/19/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a widely disseminated, macrophage-tropic arterivirus that exhibits profound genetic and pathogenic heterogeneity. The present study was conducted to determine the complete genome sequences of two novel Korean lineage 1 PRRSV-2 strains, KNU-1901 and KNU-1902, which were isolated from vaccinated pig farms experiencing unusually high morbidity and mortality. Both isolates contained notable discontinuous 423-nucleotide deletions (DELs) within the genes encoding nonstructural protein 2 (nsp2) and GP3 when compared with the prototype strain VR-2332. In particular, the nsp2 DEL viruses had unique quadripartite discontinuous DEL signatures (111-1-19-9) in nsp2; this is an expanded version of the tripartite 111-1-19 DEL previously identified in virulent lineage 1 PRRSV-2 strains. Phylogenetic analysis revealed that both novel nsp2 DEL viruses belong to the Korean clade (KOR C) of lineage 1 isolates based on ORF5 but cluster with lineage KOR A strains based on the nsp2 or complete genome sequence. Recombination detection analysis suggested that both novel isolates are recombinants and may have evolved via natural inter-lineage recombination between circulating KOR A and KOR C strains. Interestingly, compared with the prototype VR-2332 virus, the novel nsp2 DEL variants were less efficient at promoting the expression of immune response genes in porcine alveolar macrophage culture. Taken together, we conclude that KNU-1901 and KNU-1902 are recently evolved recombinant variants of the virulent lineage 1 family that caused the regional severe PRRS outbreaks.
Collapse
Affiliation(s)
- Jonghyun Park
- Animal Virology Laboratory, School of Life Sciences, College of Natural Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Subin Choi
- Animal Virology Laboratory, School of Life Sciences, College of Natural Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji Hyun Jeon
- Animal Virology Laboratory, School of Life Sciences, College of Natural Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | | | - Changhee Lee
- Animal Virology Laboratory, School of Life Sciences, College of Natural Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
5
|
Kwon T, Yoo SJ, Park JW, Kang SC, Park CK, Lyoo YS. Genomic characteristics and pathogenicity of natural recombinant porcine reproductive and respiratory syndrome virus 2 harboring genes of a Korean field strain and VR-2332-like strain. Virology 2019; 530:89-98. [PMID: 30798067 PMCID: PMC7172094 DOI: 10.1016/j.virol.2019.01.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 01/03/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), an economically-important disease caused by PRRS virus (PRRSV), has become endemic to most pig-producing countries. Point mutation and recombination are responsible for genetic heterogeneity, resulting in circulation of genetically-diverse strains. However, no natural recombinant PRRSV has yet been identified in Korea. Here, we successfully isolated natural recombinant PRRSV-2 (KU-N1202) using cell culture, investigated its genomic characteristics, and further evaluated its pathogenicity. KU-N1202 is a recombinant strain between Korean MN184-like and VR-2332-like strains. Specifically, ORF5 to partial ORF7 of the VR-2332-like strain was inserted into the backbone of a CP07-626-2-like strain. KU-N1202 induced mild-to-moderate clinical signs and mild histopathological changes with low viral loads in challenged pigs. Contact pigs showed minimal clinical signs and lower viral loads than those in the challenge group. This study demonstrates the genomic characteristics and pathogenicity of natural recombinant PRRSV-2, illustrating the potential importance of recombination in the field. A natural recombinant PRRSV-2 virus (KU-N1202) was isolated using cell culture. The virus harbored the genes from field strain and VR-2332-like strain. KU-N1202 induced mild-to-moderate clinical signs with low viral loads in challenged pig. Contact pigs showed minimal clinical signs with relatively low viral loads.
Collapse
Affiliation(s)
- Taeyong Kwon
- College of Veterinary Medicine Konkuk University, Seoul 05029, Republic of Korea
| | - Sung J Yoo
- College of Veterinary Medicine Konkuk University, Seoul 05029, Republic of Korea
| | - Jun Woo Park
- College of Veterinary Medicine Konkuk University, Seoul 05029, Republic of Korea
| | | | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young S Lyoo
- College of Veterinary Medicine Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
6
|
Independent evolution of porcine reproductive and respiratory syndrome virus 2 with genetic heterogeneity in antigenic regions of structural proteins in Korea. Arch Virol 2018; 164:213-224. [PMID: 30317394 DOI: 10.1007/s00705-018-4048-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen that affects the global swine industry. The continuous evolution of this virus has made control and prevention difficult, which emphasizes the importance of monitoring currently circulating PRRSV strains. In this study, we investigated the genetic characteristics of whole structural genes of 35 PRRSV-2 isolates that circulated between 2012 and 2017 in Korea. Genetic and phylogenetic analysis demonstrated that a recently identified PRRSV-2 shared a relatively low level of nucleotide sequence identity that ranged from 86.2% to 92.8%; however, they were clustered into four distinct Korean field clades, except KU-N1702, in ORF2-7-based phylogeny. KU-N1702 was closely related to the NADC30-like strains that were identified in the USA and China. Amino acid sequence analysis showed that the GP5 neutralizing epitope was conserved among the KU viruses. In contrast, the viruses had genetic mutations in key residues for viral neutralization within GP5 and M. For minor structural proteins, neutralizing epitopes, aa 41-55 of GP2, 61-75 of GP3, and 51-65 of GP4, were variable among the KU viruses. Bioinformatics demonstrated diversifying evolution within the GP2 and GP4 neutralizing epitopes and the emergence of a novel glycosylation site within the GP3 and GP4 neutralizing epitopes. Taken together, these data provide evidence that Korean PRRSV-2 evolved independently in Korea, with genetic heterogeneity in antigenic regions of structural proteins.
Collapse
|
7
|
Yu JE, Ouh IO, Kang H, Lee HY, Cheong KM, Cho IS, Cha SH. An enhanced immunochromatographic strip test using colloidal gold nanoparticle-labeled dual-type N proteins for detection of antibodies to PRRS virus. J Vet Sci 2018; 19:519-527. [PMID: 29510472 PMCID: PMC6070587 DOI: 10.4142/jvs.2018.19.4.519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/21/2018] [Accepted: 03/03/2018] [Indexed: 11/25/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is recognized as one of the most important infectious diseases causing serious economic loss in the swine industry worldwide. Due to its increasing genetic diversity, a rapid and accurate diagnosis is critical for PRRS control. The immunochromatographic strip test (ICST) is a rapid and convenient type of immunoassay. In this study, an on-site immunochromatographic assay-based diagnostic method was developed for detection of PRRS virus (PRRSV)-specific antibodies. The method utilized colloidal gold nanoparticle-labeled dual-type nucleocapsid proteins encoded by open reading frame 7. We evaluated 991 field samples from pig farms and 66 serum samples from experimentally PRRSV-inoculated pigs. Based on true PRRSV-specific antibody-positive or -negative sera determined by immunofluorescence assay and IgM enzyme-linked immunosorbent assay (ELISA), the specificity and sensitivity of the ICST were 97.5% and 91.1%, respectively, similar to those of a commercial ELISA (IDEXX PRRS X3 Ab). More importantly, the ICST was completed within 15 min and could detect the PRRSV-specific antibody at an earlier stage of infection (3-7 days) than that of ELISA (7+ days). The results demonstrate that the developed ICST has great potential as an on-farm diagnostic method, providing excellent diagnostic performance in a quick and convenient manner.
Collapse
Affiliation(s)
- Ji Eun Yu
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - In-Ohk Ouh
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Hyeonjeong Kang
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Hye-Young Lee
- Research Institution, MEDIAN Diagnostics, Chuncheon 24399, Korea
| | | | - In-Soo Cho
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Sang-Ho Cha
- Viral Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| |
Collapse
|
8
|
Kang H, Yu JE, Shin JE, Kang A, Kim WI, Lee C, Lee J, Cho IS, Choe SE, Cha SH. Geographic distribution and molecular analysis of porcine reproductive and respiratory syndrome viruses circulating in swine farms in the Republic of Korea between 2013 and 2016. BMC Vet Res 2018; 14:160. [PMID: 29769138 PMCID: PMC5956928 DOI: 10.1186/s12917-018-1480-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 04/30/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) causes devastating disease characterized by reproductive failure and respiratory problems in the swine industry. To understand the recent prevalence and genetic diversity of field PRRSVs in the Republic of Korea, open reading frames (ORFs) 5 and 7 of PRRSV field isolates from 631 PRRS-affected swine farms nationwide in 2013-2016 were analyzed along with 200 Korean field viruses isolated in 2003-2010, and 113 foreign field and vaccine strains. RESULTS Korean swine farms were widely infected with PRRSVs of a single type (38.4 and 37.4% for Type 1 and Type 2 PRRSV, respectively) or both types (24.2%) with up to approximately 83% nucleotide sequence similarity to prototype PRRSVs (Lelystad or VR2332). Phylogenetic analysis based on the ORF5 nucleotide sequence revealed that Korean Type 1 field isolates were classified as subgroups A, B, and C under subtype 1, while Korean Type 2 field isolates were classified as lineages 1 and 5 as well as three Korean lineages (kor A, B, and C) with the highest infection prevalence in subgroup A (50.5%) and lineage 5 (15.3%) for Type 1 and Type 2 PRRSV, respectively, among ORF5-positive farms. In particular, the lineages kor B and C were identified as novel lineages in this study, and lineage kor B comprised only the field viruses isolated from Gyeongnam Province in 2014-2015, establishing regionally unique genetic characteristics. It has also recently been confirmed that commercialized vaccine-like viruses (subgroup C) of Type 1 PRRSV and NADC30-like viruses of Type 2 PRRSV (lineage 1) are spreading rapidly in Korean swine farms. The Korean field viruses were also expected to be antigenically variable as shown in the high diversity of neutralizing epitopes and N-glycosylation sites. CONCLUSIONS This up-to-date information regarding recent field PRRSVs should be taken into consideration when creating strategies for the application of PRRS control measures, including vaccination in the field.
Collapse
Affiliation(s)
- Hyeonjeong Kang
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.,Animal Virology Laboratory, School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji Eun Yu
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Ji-Eun Shin
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Areum Kang
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Changhee Lee
- Animal Virology Laboratory, School of Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jienny Lee
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - In-Soo Cho
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Se-Eun Choe
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea
| | - Sang-Ho Cha
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea. .,Present address: PRRS research Laboratory, Viral Diseases Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Republic of Korea.
| |
Collapse
|
9
|
Cheong Y, Oh C, Lee K, Cho KH. Survey of porcine respiratory disease complex-associated pathogens among commercial pig farms in Korea via oral fluid method. J Vet Sci 2018; 18:283-289. [PMID: 27586468 PMCID: PMC5639080 DOI: 10.4142/jvs.2017.18.3.283] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/12/2016] [Accepted: 08/26/2016] [Indexed: 11/20/2022] Open
Abstract
Oral fluid analysis for herd monitoring is of interest to the commercial pig production in Korea. The aim of this study was to investigate pathogen-positive rates and correlations among eight pathogens associated with porcine respiratory disease complex by analyzing oral fluid samples from 214 pig groups from 56 commercial farms. Samples collected by a rope-chewing method underwent reverse-transcriptase polymerase chain reaction (RT-PCR) or standard polymerase chain reaction (PCR) analysis, depending on the microorganism. Pathogens were divided into virus and bacteria groups. The former consisted of porcine reproductive and respiratory syndrome virus and porcine circovirus type 2 (PCV2), and the latter Pasteurella multocida, Haemophilus parasuis, Actinobacillus pleuropneumoniae, Mycoplasma hyopneumoniae (MHP), Mycoplasma hyorhinis, and Streptococcus suis (SS). All pathogens were detected more than once by PCR. Age-based analysis showed the PCR-positive rate increased with increasing age for PCV2 and MHP, whereas SS showed the opposite. Correlations between pathogens were assessed among 36 different pair combinations; only seven pairs showed statistically significant correlations. In conclusion, the oral fluid method could be a feasible way to detect various swine respiratory disease pathogens and, therefore, could complement current monitoring systems for respiratory diseases in the swine industry.
Collapse
Affiliation(s)
- Yeotaek Cheong
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Changin Oh
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Kunkyu Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Ki-Hyun Cho
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| |
Collapse
|
10
|
Oh JN, Choi KH, Lee CK. Multi-resistance strategy for viral diseases and in vitro short hairpin RNA verification method in pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:489-498. [PMID: 29268580 PMCID: PMC5838320 DOI: 10.5713/ajas.17.0749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 11/27/2022]
Abstract
Objective Foot and mouth disease (FMD) and porcine reproductive and respiratory syndrome (PRRS) are major diseases that interrupt porcine production. Because they are viral diseases, vaccinations are of only limited effectiveness in preventing outbreaks. To establish an alternative multi-resistant strategy against FMD virus (FMDV) and PRRS virus (PRRSV), the present study introduced two genetic modification techniques to porcine cells. Methods First, cluster of differentiation 163 (CD163), the PRRSV viral receptor, was edited with the clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 technique. The CD163 gene sequences of edited cells and control cells differed. Second, short hairpin RNA (shRNAs) were integrated into the cells. The shRNAs, targeting the 3D gene of FMDV and the open reading frame 7 (ORF7) gene of PRRSV, were transferred into fibroblasts. We also developed an in vitro shRNA verification method with a target gene expression vector. Results shRNA activity was confirmed in vitro with vectors that expressed the 3D and ORF7 genes in the cells. Cells containing shRNAs showed lower transcript levels than cells with only the expression vectors. The shRNAs were integrated into CD163-edited cells to combine the two techniques, and the viral genes were suppressed in these cells. Conclusion We established a multi-resistant strategy against viral diseases and an in vitro shRNA verification method.
Collapse
Affiliation(s)
- Jong-Nam Oh
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Kwang-Hwan Choi
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Chang-Kyu Lee
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Designed Animal and Transplantation Research Institute (DATRI), Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
11
|
Kim JJ, Lee JA, Choi HY, Han JH, Huh W, Pi JH, Lee JK, Park S, Cho KH, Lee JB. In vitro and in vivo studies of deglycosylated chimeric porcine reproductive and respiratory syndrome virus as a vaccine candidate and its realistic revenue impact at commercial pig production level. Vaccine 2017; 35:4966-4973. [PMID: 28802752 DOI: 10.1016/j.vaccine.2017.07.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/04/2017] [Accepted: 07/23/2017] [Indexed: 02/03/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes major economic losses in the swine industry worldwide. Vaccination is the most effective method to control the disease. In a previous study, a chimeric PRRSV named as K418 which had a genome composed of ORF 1 from the FL12 strain and ORF 2-7 from the Korean representative LMY strain was created. We constructed K418DM, K418 with deglycosylated glycoprotein 5 (GP5), to improve its humoral immunity. In the follow-up on in vivo and in vitro virological and serological tests, no back mutation in amino acids of GP5 associated with deglycosylation was shown after 9 passages on MARC-145 cells, whereas only one case of back mutation was detected after single passage in pig. In serological study, K418DM induced higher serum neutralization (SN) antibody and more limited viremia compared with those of K418 virus. In clinical trial and economic analysis, the K418DM elicited SN antibody titers and PRRSV-specific IgG over protection limit. From the economic viewpoint, there was statistically significant reduction in percentage of weak pigs. These results indicated that vaccination with the K418DM may provide enhanced protection for pigs in PRRS endemic situation and increase growth performance in commercial pig farms.
Collapse
Affiliation(s)
- Jung-Ju Kim
- Animal Health Management Division, Ministry of Agriculture, Food and Rural Affairs, 94 Dasom2-ro, Government Complex-Sejong, Sejong-si 30110, Republic of Korea; Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Ah Lee
- Division of Vaccine Research, Korea National Institute of Health, Korea Center for Disease Control and Prevention, Osong Health Technology Administration Complex, Osongsaengmueong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159, Republic of Korea
| | - Hwi-Yeon Choi
- Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jang-Hyuck Han
- KBNP, INC., 254-18, Dugok-ri, Sinam, Yesan-si, Chungchungnam-do 32417, Republic of Korea
| | - Won Huh
- Daesung Microbiological Labs. Co., Ltd., 5F, Soam Building, 208, Bangbae-ro, Seocho-gu, Seoul 06585, Republic of Korea
| | - Jae-Ho Pi
- Sungwoo Agricultural Co., 40-3 Hongnamseo-ro, 843 beon-gil, Gyeolseong-myeon, Hongseong-gun, Chungcheongnam-do 32210, Republic of Korea
| | - Jung-Keun Lee
- College of Veterinary Medicine, Midwestern University, 19555, North 59th Avenue, Glendale, AZ 85308, USA
| | - Sangshin Park
- The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Ki-Hyun Cho
- Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Veterinary Epidemiology Division, Animal and Plant Quarantine Agency, 177 Hyeoksin8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea.
| | - Joong-Bok Lee
- Department of Veterinary Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
12
|
Genetic diversity and characteristics of porcine reproductive and respiratory syndrome virus in the area of Korea from 2013 to 2015. J Clin Virol 2016. [DOI: 10.1016/j.jcv.2016.08.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Genetic diversity of the Korean field strains of porcine reproductive and respiratory syndrome virus. INFECTION GENETICS AND EVOLUTION 2015; 40:288-294. [PMID: 26546289 DOI: 10.1016/j.meegid.2015.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/25/2015] [Accepted: 11/02/2015] [Indexed: 11/21/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically significant diseases in the swine industry. The PRRS virus (PRRSV) has genetically diverse populations, like other RNA viruses, and various field strains continue to be reported worldwide. The molecular epidemiological study of PRRSV can provide important data for use in controlling the disease. In this study, 50 oral fluid samples from conventional farms in Korea were taken to analyze nucleotide sequences of the open reading frame 5 of PRRSV. The viruses present in more than 80% of oral fluid samples genetically originated from the type 2 PRRSV, which is North American (NA) lineage. In addition 8.9% of samples contained both of the type 1 PRRSV, which is European (EU) lineage and the type 2 PRRSV. About 60% of farms involved in this study had more than two strains of PRRSV. In phylogenetic analysis, the Korean field strains of PRRSV detected from the oral fluid samples were divided into several subgroups: four subgroups of Korean field strains clustered with the type 1 PRRSV, and other five subgroups of Korean field strains clustered with the type 2. These results suggest that the type 2 PRRSV is more prevalent than the type 1 in Korea and heterologous strains of PRRSV can simultaneously infect a single pig farm.
Collapse
|
14
|
Complete Genome Sequence of Type 1 Porcine Reproductive and Respiratory Syndrome Virus Strain E38, Isolated from South Korea with a Novel Deletion. GENOME ANNOUNCEMENTS 2015; 3:3/5/e01180-15. [PMID: 26472832 PMCID: PMC4611684 DOI: 10.1128/genomea.01180-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the complete genome sequence of the European type 1 porcine reproductive and respiratory syndrome virus E38 strain, isolated from South Korea with a novel deletion. It contains a 61-nucleotide discontinuous deletion of the Nsp2 and Nsp12 regions. This study will aid in understanding the genetic diversity of type 1 PRRSV and in manufacturing a construct based on Korean vaccine candidate development.
Collapse
|
15
|
Lee JA, Lee NH, Lee SW, Park SY, Song CS, Choi IS, Lee JB. Development of a chimeric strain of porcine reproductive and respiratory syndrome virus with an infectious clone and a Korean dominant field strain. J Microbiol 2014; 52:345-9. [PMID: 24682997 PMCID: PMC7091204 DOI: 10.1007/s12275-014-4074-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 12/11/2022]
Abstract
The K418 chimeric virus of porcine reproductive and respiratory syndrome virus (PRRSV) was engineered by replacing the genomic region containing structure protein genes of an infectious clone of PRRSV, FL12, with the same region obtained from a Korean dominant field strain, LMY. The K418 reached 106 TCID50/ml of viral titer with similar growth kinetics to those of parental strains and had a cross-reactive neutralizing antibody response to field serum from the entire country. The chimeric clone pK418 can be used as a practical tool for further studying the molecular characteristics of PRRSV proteins through genetic manipulation. Furthermore, successful construction of the K418 will allow for the development of customized vaccine candidates against PRRSV, which has evolved rapidly in Korea.
Collapse
Affiliation(s)
- Jung-Ah Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|