1
|
Li W, Li J, Dai X, Liu M, Khalique A, Wang Z, Zeng Y, Zhang D, Ni X, Zeng D, Jing B, Pan K. Surface Display of porcine circovirus type 2 antigen protein cap on the spores of bacillus subtilis 168: An effective mucosal vaccine candidate. Front Immunol 2022; 13:1007202. [PMID: 36189301 PMCID: PMC9520567 DOI: 10.3389/fimmu.2022.1007202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The oral mucosal vaccine has great potential in preventing a series of diseases caused by porcine circovirus type 2 (PCV2) infection. This study constructed a recombinant Bacillus subtilis RB with PCV2 Capsid protein (Cap) on its spore surface and cotB as a fusion partner. The immune properties of the recombinant strain were evaluated in a mouse model. IgA in intestinal contents and IgG in serum were detected by enzyme-linked immunosorbent assay (ELISA). The results demonstrated that recombinant spores could activate strong specific mucosal and humoral immune responses. In addition, spores showed good mucosal immune adjuvant function, promoting the proliferation of CD3+, CD4+ and CD8+ T cells and other immune cells. We also found that the relative expression of inflammatory cytokines such as IL-1β, IL-6, IL-10, TNF-α and IFN in the small intestinal mucosa was significantly up-regulated under the stimulation of recombinant bacteriophage. These effects are important for the balance of Th1/Th2-like responses. In summary, our results suggest that recombinant B. subtilis RB as a feed additive provides a new strategy for the development of novel and safe PCV2 mucosal subunit vaccines.
Collapse
Affiliation(s)
- Weijie Li
- Animal Microecology Institute, Department of Animal and Plant Quarantine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jianzhen Li
- College of Animal Husbandry and Veterinary, Chengdu Agricultural College, Chengdu, China
| | - Xixi Dai
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Minggang Liu
- Animal Microecology Institute, Department of Animal and Plant Quarantine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Abdul Khalique
- Animal Microecology Institute, Department of Animal and Plant Quarantine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhenghua Wang
- College of Animal Husbandry and Veterinary, Chengdu Agricultural College, Chengdu, China
| | - Yan Zeng
- Animal Microecology Institute, Department of Animal and Plant Quarantine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dongmei Zhang
- Animal Microecology Institute, Department of Animal and Plant Quarantine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- Animal Microecology Institute, Department of Animal and Plant Quarantine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dong Zeng
- Animal Microecology Institute, Department of Animal and Plant Quarantine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Animal Microecology Institute, Department of Animal and Plant Quarantine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kangcheng Pan
- Animal Microecology Institute, Department of Animal and Plant Quarantine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Kangcheng Pan,
| |
Collapse
|
2
|
Cutts A, Venn O, Dilthey A, Gupta A, Vavoulis D, Dreau H, Middleton M, McVean G, Taylor JC, Schuh A. Characterisation of the changing genomic landscape of metastatic melanoma using cell free DNA. NPJ Genom Med 2017; 2:25. [PMID: 29075515 PMCID: PMC5654504 DOI: 10.1038/s41525-017-0030-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer is characterised by complex somatically acquired genetic aberrations that manifest as intra-tumour and inter-tumour genetic heterogeneity and can lead to treatment resistance. In this case study, we characterise the genome-wide somatic mutation dynamics in a metastatic melanoma patient during therapy using low-input (50 ng) PCR-free whole genome sequencing of cell-free DNA from pre-treatment and post-relapse blood samples. We identify de novo tumour-specific somatic mutations from cell-free DNA, while the sequence context of single nucleotide variants showed the characteristic UV-damage mutation signature of melanoma. To investigate the behaviour of individual somatic mutations during proto-oncogene B-Raf -targeted and immune checkpoint inhibition, amplicon-based deep sequencing was used to verify and track frequencies of 212 single nucleotide variants at 10 distinct time points over 13 months of treatment. Under checkpoint inhibition therapy, we observed an increase in mutant allele frequencies indicating progression on therapy 88 days before clinical determination of non-response positron emission tomogrophy-computed tomography. We also revealed mutations from whole genome sequencing of cell-free DNA that were not present in the tissue biopsy, but that later contributed to relapse. Our findings have potential clinical applications where high quality tumour-tissue derived DNA is not available.
Collapse
Affiliation(s)
- Anthony Cutts
- Nuffield Division of Clinical Laboratory Sciences (NDCLS), Oxford Molecular Diagnostics Centre, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Oliver Venn
- Lighthouse Cancer Diagnostics Ltd, Oxford, UK.,The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alexander Dilthey
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Avinash Gupta
- University of Oxford Department of Oncology, Churchill Hospital, Oxford, UK
| | - Dimitris Vavoulis
- Nuffield Division of Clinical Laboratory Sciences (NDCLS), Oxford Molecular Diagnostics Centre, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Helene Dreau
- Nuffield Division of Clinical Laboratory Sciences (NDCLS), Oxford Molecular Diagnostics Centre, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Mark Middleton
- NIHR Oxford Biomedical Research Centre, Oxford, UK.,University of Oxford Department of Oncology, Churchill Hospital, Oxford, UK
| | - Gil McVean
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jenny C Taylor
- NIHR Oxford Biomedical Research Centre, Oxford, UK.,The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Anna Schuh
- NIHR Oxford Biomedical Research Centre, Oxford, UK.,University of Oxford Department of Oncology, Churchill Hospital, Oxford, UK.,Department of Haematology, Oxford University Hospital Trust, Oxford, UK
| |
Collapse
|
3
|
Kumaresan V, Palanisamy R, Pasupuleti M, Arockiaraj J. Impacts of environmental and biological stressors on immune system of Macrobrachium rosenbergii. REVIEWS IN AQUACULTURE 2017; 9:283-307. [DOI: 10.1111/raq.12139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/14/2015] [Indexed: 10/16/2023]
Abstract
AbstractMacrobrachium rosenbergiicommonly called giant freshwater prawn is a widely farmed crustacean in freshwater. Similar to other aquatic organisms, their growth and well‐being is influenced by various physical, chemical and biological factors. We discuss about the critical growth limiting factors as well as disease causing agents and the potential immune molecules ofM. rosenbergiithat are proved to involve in preventing and/or responding to those limiting factors.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai Tamil Nadu India
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai Tamil Nadu India
| | - Mukesh Pasupuleti
- Lab PCN 206 Microbiology Division CSIR‐Central Drug Research Institute Lucknow Uttar Pradesh India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai Tamil Nadu India
| |
Collapse
|
4
|
Segalés J. Best practice and future challenges for vaccination against porcine circovirus type 2. Expert Rev Vaccines 2014; 14:473-87. [DOI: 10.1586/14760584.2015.983084] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Departament de Sanitat i d’Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|