1
|
Liu R, Wang Z, Shi K, Shen Y, Yu X, Cheng C, Xia Y, Dai G, Zhao Z, Xiong Y, Wang D, Yang L, Yuan G, Jia J. Using Network Pharmacology and Transcriptome Sequencing to Investigate the Mechanism of Action of Luteolin and Quercetin in Treating Obesity. Chem Biol Drug Des 2025; 105:e70061. [PMID: 39909468 DOI: 10.1111/cbdd.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/15/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
Luteolin and quercetin, which are flavonoids, are present in various traditional Chinese medicines. Although they have been shown to improve obesity, the specific mechanisms of action remain unclear. This study aimed to determine pivotal targets and major regulatory pathways involved in their mechanisms of action using network pharmacology and transcriptome sequencing. Data on luteolin/quercetin-related targets were acquired from the PharmMapper platform, and data on known obesity-related targets were collected from the OMIM and GeneCards databases. Differentially expressed genes (DEGs) involved in luteolin and quercetin action that regulate adipogenic differentiation were identified using RNA sequencing (RNA-seq). Bioinformatic analyses were performed to identify potential target genes and pathways regulated by luteolin/quercetin during adipogenesis. Finally, key genes and pathways were validated through quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Network pharmacology showed that luteolin/quercetin was closely associated with anti-obesity targets. The related pathways were metabolic, PI3K/AKT, and MAPK pathways. RNA-seq revealed 91 common DEGs involved in luteolin/quercetin regulation of adipogenic differentiation. Finally, nine potential target genes (including CIDEC, Mgll, Slc2a4, Pck1, and PNPLA3) were identified, and the AMPK and AKT signaling pathways were verified. The present study provides novel information regarding the molecular mechanism of luteolin and quercetin action in treating obesity and demonstrates their therapeutic effects through multiple targets and pathways.
Collapse
Affiliation(s)
- Ruoshuang Liu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhaoxiang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Kangru Shi
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yirong Shen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiawen Yu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Caiqin Cheng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yue Xia
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyu Dai
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhicong Zhao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuyun Xiong
- Department of Clinical Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dong Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ling Yang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jue Jia
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
2
|
Fotouhi S, Yavari A, Bagheri AR, Askari VR, Gholami Y, Baradaran Rahimi V. Exploring the promising impacts of naringin and its aglycone constituent naringenin as major citrus flavonoids on diabetes and its complications. J Funct Foods 2025; 124:106643. [DOI: 10.1016/j.jff.2024.106643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
3
|
Nobushi Y, Wada T, Miura M, Onoda R, Ishiwata R, Oikawa N, Shigematsu K, Nakakita T, Toriyama M, Shimba S, Kishikawa Y. Effects of Flavanone Derivatives on Adipocyte Differentiation and Lipid Accumulation in 3T3-L1 Cells. Life (Basel) 2024; 14:1446. [PMID: 39598244 PMCID: PMC11595554 DOI: 10.3390/life14111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Flavanones, a class of flavonoids, are abundant in fruits, vegetables, and herbs. They are known to have several biological activities, such as anti-inflammatory and anti-cancer activities, but their effects on obesity remain unclear. Obesity is closely associated with adipocyte differentiation and lipid accumulation in adipose tissue. Therefore, in this study, we examined the effects of flavanone derivatives on adipocyte differentiation and lipid accumulation by using 3T3-L1 cells. Among the 15 flavanone derivatives studied, 4'-phenylflavanone (4PF), with a biphenyl structure, significantly inhibited adipocyte differentiation-related lipid accumulation in 3T3-L1 cells; this inhibition of lipid accumulation was dose-dependent. Gene expression analysis showed that 4PF suppressed the expression of adipogenic marker genes. Although the induction of peroxisome proliferator activator γ2 (Pparγ2), a master regulator of adipocyte differentiation, and its target genes during adipocyte differentiation was attenuated in 4PF-treated cells, 4PF did not directly regulate Pparγ2 gene expression and its activation. In contrast, 4PF suppressed mitotic clonal expansion (MCE), which is associated with changes in the expression of proliferation-related genes at the early stages of adipocyte differentiation. Taken together, these results suggest that 4PF inhibits lipid accumulation because it suppresses MCE during adipocyte differentiation. Thus, our findings may help in the development of anti-obesity drugs.
Collapse
Affiliation(s)
- Yasuhito Nobushi
- Laboratory of Clinical Pharmacy, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi 274-8555, Chiba, Japan; (R.O.); (R.I.); (Y.K.)
| | - Taira Wada
- Laboratory of Health Science, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi 274-8555, Chiba, Japan; (T.W.); (S.S.)
| | - Motofumi Miura
- Laboratory of Molecular Chemistry, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi 274-8555, Chiba, Japan; (M.M.); (K.S.); (M.T.)
| | - Rikuto Onoda
- Laboratory of Clinical Pharmacy, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi 274-8555, Chiba, Japan; (R.O.); (R.I.); (Y.K.)
| | - Ryuta Ishiwata
- Laboratory of Clinical Pharmacy, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi 274-8555, Chiba, Japan; (R.O.); (R.I.); (Y.K.)
| | - Naoki Oikawa
- Laboratory of Medicinal Chemistry, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi 274-8555, Chiba, Japan;
| | - Karin Shigematsu
- Laboratory of Molecular Chemistry, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi 274-8555, Chiba, Japan; (M.M.); (K.S.); (M.T.)
| | - Toshinori Nakakita
- Medicine Analysis Research Laboratory, Yokohama University of Pharmacy, 601, Matano-cho, Totsuka-ku, Yokohama 245-0066, Kanagawa, Japan;
| | - Masaharu Toriyama
- Laboratory of Molecular Chemistry, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi 274-8555, Chiba, Japan; (M.M.); (K.S.); (M.T.)
| | - Shigeki Shimba
- Laboratory of Health Science, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi 274-8555, Chiba, Japan; (T.W.); (S.S.)
| | - Yukinaga Kishikawa
- Laboratory of Clinical Pharmacy, School of Pharmacy, Nihon University, 7-7-1, Narashinodai, Funabashi 274-8555, Chiba, Japan; (R.O.); (R.I.); (Y.K.)
| |
Collapse
|
4
|
Kehinde SA, Fatokun TP, Olajide AT, Praveena SM, Sokan-Adeaga AA, Adekunle AP, Fouad D, Papadakis M. Impact of polyethylene microplastics exposure on kallikrein-3 levels, steroidal-thyroidal hormones, and antioxidant status in murine model: protective potentials of naringin. Sci Rep 2024; 14:23664. [PMID: 39390134 PMCID: PMC11467413 DOI: 10.1038/s41598-024-74637-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
The widespread presence of microplastics in the environment has raised significant concerns regarding their potential impact on human and animal health. Among various microplastic types, polyethylene microplastics (PE-MPs) are particularly prevalent due to the extensive use in packaging and consumer products. Exploring the uncharted therapeutic potentials of naringin, this study delves into its mitigating effects on disruptions in kallikrein-3 levels, steroidal-thyroidal hormone balance, and antioxidant defense triggered by PE-MPs exposure, paving the way for novel interventions in environmental toxin-induced endocrine and oxidative stress disorders. Male Wistar rats (n = 24) were randomly grouped into four: Control, PE-MPs (1.5 mg/kg), PE-MPs + NAR (1.5 mg/kg PE-MPs + 100 mg/kg NAR), and NAR (100 mg/kg). Hormonal and antioxidant parameters were assessed after 28 days of exposure. PE-MPs exposure caused a significant increase(p < 0.005) in the level of kallikrein-3 (KLK-3) while it significantly reduces the levels of testosterone (TST), luteinizing hormone, thyroid stimulating hormone (TSH) and Free-triiodothyronine (fT3) and Total cholesterol (TChol) concentration. PE-MPs exposure also disrupted significantly (p < 0.005) antioxidant profile by down-regulating the activities of glutathione-S-transferase, catalase (CAT), superoxide dismutase (SOD) and reducing levels of glutathione (GSH) and ascorbic acid (AA) while concentration of malondialdehyde (MDA) levels were increased relative to control. However, the mitigating potentials of naringin on disruptions in hormonal and antioxidant profiles caused by PE-MPs exposure were demonstrated, as NAR normalized KLK-3, steroid, and thyroid hormone levels, cholesterol concentration, and enhanced antioxidant defense. This suggests that NAR is a promising protective agent against endocrine and oxidative damage induced by environmental contaminants such as microplastics.
Collapse
Affiliation(s)
- Samuel Abiodun Kehinde
- Biochemical/Environmental Toxicology Laboratory, Faculty of Basic Medical Sciences, Ajayi Crowther University, Oyo, Nigeria.
| | - Tolulope Peter Fatokun
- Department of Drug Toxicology and Safety Pharmacology, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Abosede Temitope Olajide
- Cell and Signaling Laboratory, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Serdang, Selangor Darul Ehsan, 43400, Malaysia
| | - Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Adewale Allen Sokan-Adeaga
- Department of Environmental Health Science, Faculty of Basic Medical Science, Ajayi Crowther University, Oyo, Nigeria
| | - Adegbola Philip Adekunle
- Department of Environmental Health Science, Oyo State College of Health Sciences and Technology, Ibadan, Nigeria
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| |
Collapse
|
5
|
Dayarathne LA, Jasmadi, Ko SC, Yim MJ, Lee JM, Kim JY, Oh GW, Lee DS, Jung WK, Lee SJ, Je JY. Strongylocentrotus intermedius Extract Suppresses Adiposity by Inhibiting Adipogenesis and Promoting Adipocyte Browning via AMPK Activation in 3T3-L1 Cells. J Microbiol Biotechnol 2024; 34:1688-1697. [PMID: 39086228 PMCID: PMC11380521 DOI: 10.4014/jmb.2404.04041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
The current study aimed to determine whether Strongylocentrotus intermedius (S. intermedius) extract (SIE) exerts anti-obesity potentials employing 3T3-L1 cells as in vitro model. Herein we reported that treatment of SIE for 6 days reduced lipid accretion and triglyceride content whereas it increased the release of free glycerol. The inhibited lipid accumulation and induced lipolysis were evidenced by the downregulation of lipogenesis proteins, such as fatty acid synthase and lipoprotein lipase, and the upregulation of hormone-sensitive lipase expression. Furthermore, the downregulation of adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein α, and sterol regulatory element-binding protein 1, highlights that reduced lipid accumulation is supported by lowering adipocyte differentiation. Additionally, treatment activates brown adipocyte phenotype in 3T3-L1 cells by inducing expression of brown adipose tissue-specific proteins, such as uncoupling protein 1 and peroxisome proliferator-activated receptor-γ coactivator 1α. Moreover, SIE induced the phosphorylation of AMP-activated protein kinase (AMPK). The pharmacological approach using AMPK inhibitor revealed that the restraining effect of SIE on adipogenesis and promotion of adipocyte browning were blocked. In GC-MS analysis, SIE was mainly composed of cholest-5-en-3-ol (36.71%) along with saturated and unsaturated fatty acids which have favorable anti-obesity potentials. These results reveal that SIE has the possibility as a lipid-lowering agent for the intervention of obesity.
Collapse
Affiliation(s)
- Lakshi A Dayarathne
- Department of Food and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Jasmadi
- Department of Food and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
- National Research and Innovation Agency, Research Center for Food Technology and Processing, Gunungkidul, 55861, Indonesia
| | - Seok-Chun Ko
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea
| | - Mi-Jin Yim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea
| | - Jeong Min Lee
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea
| | - Ji-Yul Kim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea
| | - Gun-Woo Oh
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea
| | - Dae-Sung Lee
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea
| | - Won-Kyo Jung
- Major of Biomedical Engineering, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | | | | |
Collapse
|
6
|
Natraj P, Rajan P, Jeon YA, Kim SS, Lee YJ. Antiadipogenic Effect of Citrus Flavonoids: Evidence from RNA Sequencing Analysis and Activation of AMPK in 3T3-L1 Adipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17788-17800. [PMID: 37955544 DOI: 10.1021/acs.jafc.3c03559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Citrus fruits are rich in dietary flavonoids and have many health benefits, but their antiadipogenic mechanism of action and their impact on lipid metabolism remain unclear. In this study, we investigated the effect of citrus flavonoids, namely, hesperidin (HES), narirutin (NAR), nobiletin (NOB), sinensetin (SIN), and tangeretin (TAN), on preventing fat cell development by gene expression in 3T3-L1 adipocytes. Among the citrus flavonoids tested, HES and NAR significantly reduced fat storage and triglyceride levels and increased glucose uptake in 3T3-L1 adipocytes. Additionally, HES and NAR treatment increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) while reducing the protein expression of 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR). Furthermore, in silico docking revealed that flavonoids activate AMPK. RNA sequencing analysis demonstrated that citrus flavonoids normalized the expression of 40 genes, which were either upregulated by more than 2-fold or downregulated by less than 0.6-fold including Acadv1, Acly, Akr1d1, Awat1, Cyp27a1, Decr1, Dhrs4, Elovl3, Fasn, G6pc, Gba, Hmgcs1, Mogat2, Lrp5, Sptlc3, and Snca to levels comparable to the control group. Altogether, HES and NAR among five citrus flavonoids showed antiadipogenic effects by regulating the expression of specific lipid metabolism genes partially restored to control levels in 3T3-L1 cells.
Collapse
Affiliation(s)
- Premkumar Natraj
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
- Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| | - Priyanka Rajan
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea
| | - Yoon A Jeon
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
- Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| | - Sang Suk Kim
- Citrus Research Institute, National Institute of Horticultural & Herbal Science, RDA, Jeju 63607, Korea
| | - Young Jae Lee
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
- Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
7
|
Kozłowska J, Duda-Madej A, Baczyńska D. Antiproliferative Activity and Impact on Human Gut Microbiota of New O-Alkyl Derivatives of Naringenin and Their Oximes. Int J Mol Sci 2023; 24:9856. [PMCID: PMC10298275 DOI: 10.3390/ijms24129856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Naringenin is a 5,7,4′-trihydroxyflavanone naturally occurring mainly in citrus fruits, characterized by a wide spectrum of biological activity. Chemical modifications based on alkylation and oximation in most cases increase its bioactivity. The aim of our research was to evaluate the antiproliferative activity and influence on selected representatives of the human gut microbiota of new synthesized O-alkyl derivatives (A1–A10) and their oximes (B1–B10), which contain hexyl, heptyl, octyl, nonyl and undecyl chains attached to the C-7 or to both the C-7 and C-4′ positions in naringenin. To the best of our knowledge, compounds A3, A4, A6, A8–A10 and B3–B10 have not been described in the scientific literature previously. The anticancer activity was tested on human colon cancer cell line HT-29 and mouse embryo fibroblasts 3T3-L1 using the sulforhodamine B (SRB) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays. We also determined the impacts of all compounds on the growth of Gram-positive and Gram-negative bacterial strains, such as Staphylococcus aureus, Enterococcus faecalis and Escherichia coli. The antimicrobial activity was expressed in terms of minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) values. For 7,4′-di-O-hexylnaringenin (A2), 7-O-undecylnaringenin (A9) and their oximes (B2, B9), which were safe for microbiota (MIC > 512 µg/mL) and almost all characterized by high cytotoxicity against the HT-29 cell line (A2: IC50 > 100 µg/mL; A9: IC50 = 17.85 ± 0.65 µg/mL; B2: IC50 = 49.76 ± 1.63 µg/mL; B9: IC50 = 11.42 ± 1.17 µg/mL), apoptosis assays were performed to elucidate their mechanisms of action. Based on our results, new compound B9 induced an apoptotic process via caspase 3/7 activation, which proved its potential as an anticancer agent.
Collapse
Affiliation(s)
- Joanna Kozłowska
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland;
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy with Division of Laboratory Diagnostics, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland;
| |
Collapse
|
8
|
Flori L, Piragine E, Spezzini J, Citi V, Calderone V, Martelli A. Influence of Polyphenols on Adipose Tissue: Sirtuins as Pivotal Players in the Browning Process. Int J Mol Sci 2023; 24:ijms24119276. [PMID: 37298226 DOI: 10.3390/ijms24119276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Adipose tissue (AT) can be classified into two different types: (i) white adipose tissue (WAT), which represents the largest amount of total AT, and has the main function of storing fatty acids for energy needs and (ii) brown adipose tissue (BAT), rich in mitochondria and specialized in thermogenesis. Many exogenous stimuli, e.g., cold, exercise or pharmacological/nutraceutical tools, promote the phenotypic change of WAT to a beige phenotype (BeAT), with intermediate characteristics between BAT and WAT; this process is called "browning". The modulation of AT differentiation towards WAT or BAT, and the phenotypic switch to BeAT, seem to be crucial steps to limit weight gain. Polyphenols are emerging as compounds able to induce browning and thermogenesis processes, potentially via activation of sirtuins. SIRT1 (the most investigated sirtuin) activates a factor involved in mitochondrial biogenesis, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), which, through peroxisome proliferator-activated receptor γ (PPAR-γ) modulation, induces typical genes of BAT and inhibits genes of WAT during the transdifferentiation process in white adipocytes. This review article aims to summarize the current evidence, from pre-clinical studies to clinical trials, on the ability of polyphenols to promote the browning process, with a specific focus on the potential role of sirtuins in the pharmacological/nutraceutical effects of natural compounds.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Jacopo Spezzini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, 56126 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
9
|
Rajan P, Natraj P, Kim NH, Kim JH, Choi HJ, Han CH. Effects of Cudrania tricuspidata and Sargassum fusiforme extracts on hair growth in C57BL/6 mice. Lab Anim Res 2023; 39:4. [PMID: 36800993 PMCID: PMC9936642 DOI: 10.1186/s42826-023-00154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Cudrania tricuspidata is a perennial plant, and Sargassum fusiforme is a brown seaweed with numerous potential benefits, including anticancer, anti-inflammatory, and antioxidant activities. However, the efficacies of C. tricuspidata and S. fusiforme on hair growth have not yet been elucidated. Therefore, the present study examined the effects of C. tricuspidata and S. fusiforme extracts on hair growth in C57BL/6 mice. RESULTS ImageJ demonstrated that drinking and skin application of C. tricuspidata and/or S. fusiforme extracts significantly increased the hair growth rate in the dorsal skin of C57BL/6 mice compared to the control group. Histological analysis confirmed that drinking and skin application of C. tricuspidata and/or S. fusiforme extracts for 21 days significantly increased the length of hair follicles on the dorsal skin of treated C57BL/6 mice compared to that in the control mice. RNA sequencing analysis revealed that hair growth cycle-related factors (anagen factors) such as Catenin Beta 1 (Ctnnb1) and platelet-derived growth factor (Pdgf) were upregulated (> twofold) only by C. tricuspidate extracts, whereas vascular endothelial growth factor (Vegf) and Wnts were upregulated by both C. tricuspidata or S. fusiforme applications in treated mice (compared to the control mice). In addition, oncostatin M (Osm, a catagen-telogen factor) was downregulated (< 0.5 fold) by C. tricuspidata when administered via both skin and drinking mode in treated mice compared to that in control mice. CONCLUSIONS Our results suggest that C. tricuspidata and/or S. fusiforme extracts show potential hair growth efficacy by upregulating anagen factor genes, including β-catenin, Pdgf, Vegf, and Wnts, and downregulating catagen-telogen factor genes, including Osm, in C57BL/6 mice. The findings suggest that C. tricuspidata and/or S. fusiforme extracts are potential drug candidates to treat alopecia.
Collapse
Affiliation(s)
- Priyanka Rajan
- grid.411277.60000 0001 0725 5207Department of Biochemistry, College of Veterinary Medicine, Jeju National University, Jeju, 63243 Republic of Korea
| | - Premkumar Natraj
- grid.411277.60000 0001 0725 5207Department of Biochemistry, College of Veterinary Medicine, Jeju National University, Jeju, 63243 Republic of Korea
| | - Nak Hyoung Kim
- grid.411277.60000 0001 0725 5207Department of Biochemistry, College of Veterinary Medicine, Jeju National University, Jeju, 63243 Republic of Korea
| | - Jae-Hoon Kim
- grid.411277.60000 0001 0725 5207Department of Biochemistry, College of Veterinary Medicine, Jeju National University, Jeju, 63243 Republic of Korea
| | | | - Chang-Hoon Han
- Department of Biochemistry, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
10
|
Lee D, Hong S, Jung K, Choi S, Kang KS. Suppressive Effects of Flavonoids on Macrophage-Associated Adipocyte Inflammation in a Differentiated Murine Preadipocyte 3T3-L1 Cells Co-Cultured with a Murine Macrophage RAW264.7 Cells. PLANTS (BASEL, SWITZERLAND) 2022; 11:3552. [PMID: 36559664 PMCID: PMC9783032 DOI: 10.3390/plants11243552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The suppressive effects of flavonoids on macrophage-associated adipocyte inflammation in a differentiated murine preadipocyte cell line (3T3-L1) co-cultured with a murine macrophage cell line (RAW264.7) were evaluated. Extracellular lipid accumulation was investigated via Oil Red O staining. The expression levels of adipogenesis- and inflammation-associated proteins, including CCAAT/enhancer-binding protein (C/EBP)-α, inducible nitric oxide synthase (iNOS), C/EBPβ, peroxisome proliferator-activated receptor γ (PPARγ), and cyclooxygenase-2 (COX-2), were determined via Western blotting. Proinflammatory cytokines, including monocyte chemoattractant protein 1 (MCP-1) and interleukin-6 (IL-6), were assessed using enzyme-linked immunosorbent assay kits. We found that silybin, formononetin, and diosmetin inhibited lipid accumulation and production of proinflammatory cytokines in the co-cultures of 3T3-L1 and RAW264.7 cells. Moreover, they inhibited the protein expression of PPARγ, C/EBPα, COX-2, C/EBPβ, and iNOS in the co-cultures of 3T3-L1 and RAW264.7 cells. These data support that silybin, formononetin, and diosmetin inhibit macrophage-associated adipocyte inflammation and lipid accumulation.
Collapse
Affiliation(s)
- Dahae Lee
- Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Sukyong Hong
- College of Pharmacy, CHA University, Sungnam 13844, Republic of Korea
| | - Kiwon Jung
- College of Pharmacy, CHA University, Sungnam 13844, Republic of Korea
- Oncobix Co., Ltd., Yongin-si 16950, Republic of Korea
| | - Sungyoul Choi
- Department of Neuropsychiatry, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Ki Sung Kang
- Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
11
|
Anti-diabetic effect of hesperidin on palmitate (PA)-treated HepG2 cells and high fat diet-induced obese mice. Food Res Int 2022; 162:112059. [DOI: 10.1016/j.foodres.2022.112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/17/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022]
|
12
|
Sun J, Wang Z, Lin C, Xia H, Yang L, Wang S, Sun G. The hypolipidemic mechanism of chrysanthemum flavonoids and its main components, luteolin and luteoloside, based on the gene expression profile. Front Nutr 2022; 9:952588. [PMID: 36147301 PMCID: PMC9487889 DOI: 10.3389/fnut.2022.952588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, the following four groups of mice with hyperlipidemia were involved: the model control group (MC), the Chrysanthemum flavonoids group (CF), the luteolin group, and the luteoloside group. The whole gene expression profile was detected in the liver tissues of each group. Differential genes significantly enriched in the biological process of gene ontology (GO) items and Kyoto Encyclopedia of Genes and Genomes (KEGG) were selected, and 4 differential genes related to lipid metabolism were selected for further real-time quantitative PCR verification. Compared with the MC, 41 differential genes such as Sqle, Gck, and Idi1 were screened in the CF intervention group; 68 differential genes such as Acsl3, Cyp7a1, and Lpin1 were screened in the luteolin intervention group (CF); and 51 differential genes such as Acaca, Cyp7a1, and Lpin1 were screened in the luteoloside group. The mechanism of CF to improve hyperlipidemia is very complex, mainly involving biological processes such as cholesterol and fatty acid metabolism and glycolysis, luteolin mainly involves the synthesis and transport of cholesterol, and luteoloside mainly involves fatty acid metabolism. The functional pathways of CF may not be completely the same as luteolin and luteoloside, and further study is needed on the mechanism of action of other components.
Collapse
Affiliation(s)
- Jihan Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Zhaodan Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
- College of Biology and Food Engineering, Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, Chongqing Three Gorges University, Chongqing, China
| | - Chen Lin
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
- College of Biology and Food Engineering, Technology Research Center of Characteristic Biological Resources in Northeast of Chongqing, Chongqing Three Gorges University, Chongqing, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
- *Correspondence: Guiju Sun,
| |
Collapse
|
13
|
Stabrauskiene J, Kopustinskiene DM, Lazauskas R, Bernatoniene J. Naringin and Naringenin: Their Mechanisms of Action and the Potential Anticancer Activities. Biomedicines 2022; 10:biomedicines10071686. [PMID: 35884991 PMCID: PMC9313440 DOI: 10.3390/biomedicines10071686] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022] Open
Abstract
Naringin and naringenin are the main bioactive polyphenols in citrus fruits, the consumption of which is beneficial for human health and has been practiced since ancient times. Numerous studies have reported these substances’ antioxidant and antiandrogenic properties, as well as their ability to protect from inflammation and cancer, in various in vitro and in vivo experimental models in animals and humans. Naringin and naringenin can suppress cancer development in various body parts, alleviating the conditions of cancer patients by acting as effective alternative supplementary remedies. Their anticancer activities are pleiotropic, and they can modulate different cellular signaling pathways, suppress cytokine and growth factor production and arrest the cell cycle. In this narrative review, we discuss the effects of naringin and naringenin on inflammation, apoptosis, proliferation, angiogenesis, metastasis and invasion processes and their potential to become innovative and safe anticancer drugs.
Collapse
Affiliation(s)
- Jolita Stabrauskiene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Robertas Lazauskas
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
- Correspondence:
| |
Collapse
|
14
|
Effects of naringin and valproate interaction on liver steatosis and dyslipidaemia parameters in male C57BL6 mice. Arh Hig Rada Toksikol 2022; 73:71-82. [PMID: 35390239 PMCID: PMC8999592 DOI: 10.2478/aiht-2022-73-3608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Valproate is a common antiepileptic drug whose adverse effects include liver steatosis and dyslipidaemia. The aim of our study was to see how natural flavonoid antioxidant naringin would interact with valproate and attenuate these adverse effects. For this reason we treated male C57BL6 mice with a combination of 150 mg/kg of valproate and 25 mg/kg naringin every day for 10 days and compared their serum triglycerides, cholesterol, LDL, HDL, VLDL, and liver PPAR-alpha, PGC-1 alpha, ACOX1, Nrf2, SOD, CAT, GSH, and histological signs of steatosis. Valproate increased lipid peroxidation parameters and caused pronounced microvesicular steatosis throughout the hepatic lobule in all acinar zones, but naringin co-administration limited steatosis to the lobule periphery. In addition, it nearly restored total serum cholesterol, LDL, and triglycerides and liver ACOX1 and MDA to control levels. and upregulated PPAR-alpha and PGC-1 alpha, otherwise severely downregulated by valproate. It also increased SOD activity. All these findings suggest that naringin modulates key lipid metabolism regulators and should further be investigated in this model, either alone or combined with other lipid regulating drugs or molecules.
Collapse
|
15
|
Dayarathne LA, Ranaweera SS, Natraj P, Rajan P, Lee YJ, Han CH. The effects of naringenin and naringin on the glucose uptake and AMPK phosphorylation in high glucose treated HepG2 cells. J Vet Sci 2021; 22:e92. [PMID: 34854271 PMCID: PMC8636664 DOI: 10.4142/jvs.2021.22.e92] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022] Open
Abstract
Background Naringin and its aglycone naringenin are citrus-derived flavonoids with several pharmacological effects. On the other hand, the mechanism for the anti-diabetic effects of naringenin and naringin are controversial and remain to be clarified further. Objective This study examined the relationship between glucose uptake and AMP-activated protein kinase (AMPK) phosphorylation by naringenin and naringin in high glucose-treated HepG2 cells. Methods Glucose uptake was measured using the 2-NBDG fluorescent D-glucose analog. The phosphorylation levels of AMPK and GSK3β (Glycogen synthase kinase 3 beta) were observed by Western blotting. Molecular docking analysis was performed to evaluate the binding affinity of naringenin and naringin to the γ-subunit of AMPK. Results The treatment with naringenin and naringin stimulated glucose uptake regardless of insulin stimulation in high glucose-treated HepG2 cells. Both flavonoids increased glucose uptake by promoting the phosphorylation of AMPK at Thr172 and increased the phosphorylation of GSK3β. Molecular docking analysis showed that both naringenin and naringin bind to the γ-subunit of AMPK with high binding affinities. In particular, naringin showed higher binding affinity than the true modulator, AMP with all three CBS domains (CBS1, 3, and 4) in the γ-subunit of AMPK. Therefore, both naringenin and naringin could be positive modulators of AMPK activation, which enhance glucose uptake regardless of insulin stimulation in high glucose-treated HepG2 cells. Conclusions The increased phosphorylation of AMPK at Thr172 by naringenin and naringin might enhance glucose uptake regardless of insulin stimulation in high glucose treated HepG2 cells.
Collapse
Affiliation(s)
| | | | - Premkumar Natraj
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Priyanka Rajan
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Young Jae Lee
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Chang-Hoon Han
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|