1
|
Rybicki BA, Sadasivan SM, Chen Y, Kravtsov O, Palangmonthip W, Arora K, Gupta NS, Williamson S, Bobbitt K, Chitale DA, Tang D, Rundle AG, Iczkowski KA. Growth and differentiation factor 15 and NF-κB expression in benign prostatic biopsies and risk of subsequent prostate cancer detection. Cancer Med 2021; 10:3013-3025. [PMID: 33784024 PMCID: PMC8085972 DOI: 10.1002/cam4.3850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Growth and differentiation factor 15 (GDF‐15), also known as macrophage inhibitory cytokine 1 (MIC‐1), may act as both a tumor suppressor and promotor and, by regulating NF‐κB and macrophage signaling, promote early prostate carcinogenesis. To determine whether expression of these two inflammation‐related proteins affect prostate cancer susceptibility, dual immunostaining of benign prostate biopsies for GDF‐15 and NF‐κB was done in a study of 503 case‐control pairs matched on date, age, and race, nested within a historical cohort of 10,478 men. GDF‐15 and NF‐κB expression levels were positively correlated (r = 0.39; p < 0.0001), and both were significantly lower in African American (AA) compared with White men. In adjusted models that included both markers, the odds ratio (OR) for NF‐κB expression was statistically significant, OR =0.87; p = 0.03; 95% confidence interval (CI) =0.77–0.99, while GDF‐15 expression was associated with a nominally increased risk, OR =1.06; p = 0.27; 95% CI =0.96–1.17. When modeling expression levels by quartiles, the highest quartile of NF‐κB expression was associated with almost a fifty percent reduction in prostate cancer risk (OR =0.51; p = 0.03; 95% CI =0.29–0.92). In stratified models, NF‐κB had the strongest negative association with prostate cancer in non‐aggressive cases (p = 0.03), older men (p = 0.03), and in case‐control pairs with longer follow‐up (p = 0.02). Risk associated with GDF‐15 expression was best fit using nonlinear regression modeling where both first (p = 0.02) and second (p = 0.03) order GDF‐15 risk terms were associated with significantly increased risk. This modeling approach also revealed significantly increased risk associated with GDF‐15 expression for subsamples defined by AA race, aggressive disease, younger age, and in case‐control pairs with longer follow‐up. Therefore, although positively correlated in benign prostatic biopsies, NF‐κB and GDF‐15 expression appear to exert opposite effects on risk of prostate tumor development.
Collapse
Affiliation(s)
- Benjamin A Rybicki
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - Sudha M Sadasivan
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - Yalei Chen
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | | | - Watchareepohn Palangmonthip
- Medical College of Wisconsin, Pathology, Milwaukee, WI, USA.,Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kanika Arora
- Department of Pathology, Henry Ford Hospital, Detroit, MI, USA
| | - Nilesh S Gupta
- Department of Pathology, Henry Ford Hospital, Detroit, MI, USA
| | - Sean Williamson
- Department of Pathology, Henry Ford Hospital, Detroit, MI, USA
| | - Kevin Bobbitt
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | | | - Deliang Tang
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Andrew G Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | |
Collapse
|