1
|
Wang M, Ma Q, Suthe SR, Hudson RE, Pan JY, Mikelis C, Zhu MJ, Wu ZG, Shi DR, Yao HP. Humanized dual-targeting antibody-drug conjugates specific to MET and RON receptors as a pharmaceutical strategy for the treatment of cancers exhibiting phenotypic heterogeneity. Acta Pharmacol Sin 2025; 46:1375-1389. [PMID: 39837982 PMCID: PMC12032285 DOI: 10.1038/s41401-024-01458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025]
Abstract
Cancer heterogeneity, characterized by diverse populations of tumorigenic cells, involves the occurrence of differential phenotypes with variable expressions of receptor tyrosine kinases. Aberrant expressions of mesenchymal-epithelial transition (MET) and recepteur d'origine nantais (RON) receptors contribute to the phenotypic heterogeneity of cancer cells, which poses a major therapeutic challenge. This study aims to develop a dual-targeting antibody-drug conjugate (ADC) that can act against both MET and RON for treating cancers with high phenotypic heterogeneity. Through immunohistochemical staining, we show that MET and RON expressions are highly heterogeneous with differential combinations in more than 40% of pancreatic and triple-negative breast cancer cases. This expressional heterogeneity provides the rationale to target both receptors for cancer therapy. A humanized bispecific monoclonal antibody specific to both MET and RON (PCMbs-MR) is generated through IgG recombination using monoclonal antibody sequences specific to MET and RON, respectively. Monomethyl auristatin E is conjugated to PCMbs-MR to generate a dual-targeting ADC (PCMdt-MMAE), with a drug-to-antibody ratio of 4:1. Various cancer cell lines were used to determine PCMdt-MMAE-mediated biological activities. The efficacy of PCMdt-MMAE in vivo is evaluated using multiple xenograft tumor models. PCMdt-MMAE shows a favorable pharmacokinetic profile, with a maximum tolerated dose of ~30 mg/kg in mice. Toxicological studies using Sprague-Dawley rats reveal that PCMdt-MMAE is relatively safe with slight-to-moderate, temporary, and reversible adverse events. Functionally, PCMdt-MMAE induces a robust internalization of both MET and RON and causes a large-scale cell death in cancer cell lines exhibiting MET and RON heterogeneous co-expressions. Both in vitro and in vivo studies demonstrate that the dual-targeting approach in the form of an ADC is highly effective with a long-lasting effect against tumors exhibiting MET/RON heterogeneous phenotypes. Hence, we can suggest that a dual-targeting ADC specific to both MET and RON can be employed as a novel therapeutic strategy for tumors with expressional phenotypic heterogeneity.
Collapse
Affiliation(s)
- Minghai Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, 79106, TX, USA
- Cancer Biology Research Center, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, 79106, TX, USA
| | - Qi Ma
- Comprehensive Genitourinary Cancer Center, First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
- Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo, 315000, China
| | - Sreedhar Reddy Suthe
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, 79106, TX, USA
| | - Rachel E Hudson
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, 79106, TX, USA
| | - Jing-Ying Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Constantinos Mikelis
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, 79106, TX, USA
- Cancer Biology Research Center, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, 79106, TX, USA
| | - Miao-Jin Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhi-Gang Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Dan-Rong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
2
|
Chen YL, Chu CA, Wang JY, Chen WL, Wang YW, Ho CL, Lee CT, Chow NH. Nuclear translocation of RON receptor tyrosine kinase. New mechanistic and functional insights. Cytokine Growth Factor Rev 2025; 81:9-15. [PMID: 39794156 DOI: 10.1016/j.cytogfr.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
Receptor tyrosine kinases (RTKs) are membrane sensors that monitor alterations in the extracellular milieu and translate this information into appropriate cellular responses. Epidermal growth factor receptor (EGFR) is the most well-known model in which gene expression is upregulated by mitogenic signals through the activation of multiple signaling cascades or by nuclear translocation of the full-length EGFR protein. RON (Receptuer d'Origine Nantatise, also known as macrophage stimulating 1 receptor, MST1R) has recently gained attention as a therapeutic target for human cancer. This review summarizes the recent understanding of the unusual nuclear translocation of uncleaved RON receptor proteins in response to cellular stresses, such as serum starvation, hormonal deprivation, hypoxia, and genotoxicity. This nonligand mechanism, achieved by RON per se or by interaction with EGFR, may directly activate the transcriptional machinery necessary for cancer cells to survive. In vitro experiments have demonstrated the importance of tyrosine kinase of RON in binding to and activating the c-JUN promoter, HIF-1α, DNA helicase 2, DNA-dependent protein kinase catalytic subunit, and other stress-responsive networks. Nuclear RON-activated nonhomologous end joining repair confers chemoresistance to drugs that induce double-strand breaks (DSBs) in cancer cells. Tyrosine kinase inhibitors or monoclonal antibodies targeting RON kinase may therefore be useful treatments for patients with RON-overexpressing tumors. DSB-inducing anticancer drugs are not recommended for these cancer patients. Moreover, multi-RTK inhibition is a more rational strategy for patients with RON- and RTK-coexpressing human cancer.
Collapse
Affiliation(s)
- Yi-Lin Chen
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chien-An Chu
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Jiu-Yao Wang
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan; Department of Allergy, Immunology, and Rheumatology (AIR), China Medical University Children's Hospital, Taichung, Taiwan
| | - Wan-Li Chen
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yi-Wen Wang
- Department of Food Safety Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Liang Ho
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan; Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Ta Lee
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan; Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Nan-Haw Chow
- Center for Precision Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Pathology, College of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
3
|
Gallo S, Folco CB, Crepaldi T. The MET Oncogene Network of Interacting Cell Surface Proteins. Int J Mol Sci 2024; 25:13692. [PMID: 39769452 PMCID: PMC11728269 DOI: 10.3390/ijms252413692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
The MET oncogene, encoding the hepatocyte growth factor (HGF) receptor, plays a key role in tumorigenesis, invasion, and resistance to therapy, yet its full biological functions and activation mechanisms remain incompletely understood. A feature of MET is its extensive interaction network, encompassing the following: (i) receptor tyrosine kinases (RTKs); (ii) co-receptors (e.g., CDCP1, Neuropilin1); (iii) adhesion molecules (e.g., integrins, tetraspanins); (iv) proteases (e.g., ADAM10); and (v) other receptors (e.g., CD44, plexins, GPCRs, and NMDAR). These interactions dynamically modulate MET's activation, signaling, intracellular trafficking, and degradation, enhancing its functional versatility and oncogenic potential. This review offers current knowledge on MET's partnerships, focusing on their functional impact on signaling output, therapeutic resistance, and cellular behavior. Finally, we evaluate emerging combination therapies targeting MET and its interactors, highlighting their potential to overcome resistance and improve clinical outcomes. By exploring the complex interplay within the MET network of interacting cell surface proteins, this review provides insights into advancing anti-cancer strategies and understanding the broader implications of RTK crosstalk in oncology.
Collapse
Affiliation(s)
- Simona Gallo
- Department of Oncology, University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy; (S.G.); (C.B.F.)
- Candiolo Cancer Institute, FPO-IRCCS, SP142, Km 3.95, 10060 Candiolo, Italy
| | - Consolata Beatrice Folco
- Department of Oncology, University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy; (S.G.); (C.B.F.)
- Candiolo Cancer Institute, FPO-IRCCS, SP142, Km 3.95, 10060 Candiolo, Italy
| | - Tiziana Crepaldi
- Department of Oncology, University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy; (S.G.); (C.B.F.)
- Candiolo Cancer Institute, FPO-IRCCS, SP142, Km 3.95, 10060 Candiolo, Italy
| |
Collapse
|
4
|
Mehta K, Hegde M, Girisa S, Vishwa R, Alqahtani MS, Abbas M, Shakibaei M, Sethi G, Kunnumakkara AB. Targeting RTKs/nRTKs as promising therapeutic strategies for the treatment of triple-negative breast cancer: evidence from clinical trials. Mil Med Res 2024; 11:76. [PMID: 39668367 PMCID: PMC11636053 DOI: 10.1186/s40779-024-00582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/08/2024] [Indexed: 12/14/2024] Open
Abstract
The extensive heterogeneity and the limited availability of effective targeted therapies contribute to the challenging prognosis and restricted survival observed in triple-negative breast cancer (TNBC). Recent research indicates the aberrant expression of diverse tyrosine kinases (TKs) within this cancer, contributing significantly to tumor cell proliferation, survival, invasion, and migration. The contemporary paradigm shift towards precision medicine has highlighted TKs and their receptors as promising targets for pharmacotherapy against a range of malignancies, given their pivotal roles in tumor initiation, progression, and advancement. Intensive investigations have focused on various monoclonal antibodies (mAbs) and small molecule inhibitors that specifically target proteins such as epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor (VEGFR), cellular mesenchymal-epithelial transition factor (c-MET), human epidermal growth factor receptor 2 (HER2), among others, for combating TNBC. These agents have been studied both in monotherapy and in combination with other chemotherapeutic agents. Despite these advances, a substantial terrain of unexplored potential lies within the realm of TK targeted therapeutics, which hold promise in reshaping the therapeutic landscape. This review summarizes the various TK targeted therapeutics that have undergone scrutiny as potential therapeutic interventions for TNBC, dissecting the outcomes and revelations stemming from diverse clinical investigations. A key conclusion from the umbrella clinical trials evidences the necessity for in-depth molecular characterization of TNBCs for the maximum efficiency of TK targeted therapeutics, either as standalone treatments or a combination. Moreover, our observation highlights that the outcomes of TK targeted therapeutics in TNBC are substantially influenced by the diversity of the patient cohort, emphasizing the prioritization of individual patient genetic/molecular profiles for precise TNBC patient stratification for clinical studies.
Collapse
Affiliation(s)
- Kasshish Mehta
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Mehdi Shakibaei
- Department of Human-Anatomy, Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Ludwig-Maximilian-University, 80336, Munich, Germany
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
| |
Collapse
|
5
|
Islam R, Yen KP, Rani NN'IM, Hossain MS. Recent advancement in developing small molecular inhibitors targeting key kinase pathways against triple-negative breast cancer. Bioorg Med Chem 2024; 112:117877. [PMID: 39159528 DOI: 10.1016/j.bmc.2024.117877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Triple-negative breast cancer (TNBC) stands out as the most formidable variant of breast cancer, predominantly affecting younger women and characterized by a bleak outlook and a high likelihood of spreading. The absence of safe and effective targeted treatments leaves standard cytotoxic chemotherapy as the primary option. The role of protein kinases, frequently altered in many cancers, is significant in the advancement and drug resistance of TNBC, making them a logical target for creating new, potent therapies against TNBC. Recently, an array of promising small molecules aimed at various kinases have been developed specifically for TNBC, with combination studies showing a synergistic improvement in combatting this condition. This review underscores the effectiveness of small molecule kinase inhibitors in battling the most lethal form of breast cancer and sheds light on prospective pathways for crafting novel treatments.
Collapse
Affiliation(s)
- Rajibul Islam
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Khor Poh Yen
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Nur Najihah 'Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Md Selim Hossain
- Vascular Biology Centre, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
6
|
de Aguiar ACF, Ferreira NCFDL, Borba MACSM, Filho DDLF, Leitão GM, Mattos LA, Filho JLDL, Martins DBG. TYRO3 and EPHA2 Expression Are Dysregulated in Breast Cancer. Cell Biochem Funct 2024; 42:e4128. [PMID: 39327735 DOI: 10.1002/cbf.4128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
Receptor tyrosine kinases (RTKs) are involved in cell growth, motility, and differentiation. Deregulation of RTKs signaling is associated with tumor development and therapy resistance. Potential RTKs like TAM (TYRO3, AXL, MERTK), RON, EPH, and MET have been evaluated in many cancers like lung, prostate, and colorectal, but little is known in breast tumors. In this study, 51 luminal breast cancer tissue and 8 triple negative breast cancer (TNBC) subtypes were evaluated by qPCR for the expression of TAM, RON, EPHA2, and MET genes. Statistical analysis was performed to determine the correlation to clinical data. TYRO3 is related to tumor subtype and stage, patient's age, smoking habits, and obesity. MET expression is correlated to EPHA2 and TAM gene expression. EPHA2 expression is also related to aging and smoking habits. The expression levels of the TAM and EPHA2 genes seem to play an important role in breast cancer, being also influenced by the patient's lifestyle.
Collapse
Affiliation(s)
- Ananda Cristina Fernandes de Aguiar
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
- Molecular Prospection and Bioinformatics Group, Recife, Pernambuco, Brazil
| | | | | | | | - Glauber Moreira Leitão
- Molecular Prospection and Bioinformatics Group, Recife, Pernambuco, Brazil
- Clinical Hospital of Pernambuco-Professor Romero Marques, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Luiz Alberto Mattos
- Molecular Prospection and Bioinformatics Group, Recife, Pernambuco, Brazil
- Clinical Hospital of Pernambuco-Professor Romero Marques, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - José Luiz de Lima Filho
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
- Department of Biochemistry, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Danyelly Bruneska Gondim Martins
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
- Molecular Prospection and Bioinformatics Group, Recife, Pernambuco, Brazil
- Department of Biochemistry, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| |
Collapse
|
7
|
Park J, Chang ES, Kim JY, Chelakkot C, Sung M, Song JY, Jung K, Lee JH, Choi JY, Kim NY, Lee H, Kang MR, Kwon MJ, Shin YK, Park YH, Choi YL. c-MET-positive circulating tumor cells and cell-free DNA as independent prognostic factors in hormone receptor-positive/HER2-negative metastatic breast cancer. Breast Cancer Res 2024; 26:13. [PMID: 38238761 PMCID: PMC10797795 DOI: 10.1186/s13058-024-01768-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Endocrine therapy resistance in hormone receptor-positive/HER2-negative (HR+/HER2-) breast cancer (BC) is a significant clinical challenge that poses several unmet needs in the management of the disease. This study aimed to investigate the prognostic value of c-MET-positive circulating tumor cells (cMET+ CTCs), ESR1/PIK3CA mutations, and cell-free DNA (cfDNA) concentrations in patients with hormone receptor-positive (HR+) metastatic breast cancer (mBC). METHODS Ninety-seven patients with HR+ mBC were prospectively enrolled during standard treatment at Samsung Medical Center. CTCs were isolated from blood using GenoCTC® and EpCAM or c-MET CTC isolation kits. PIK3CA and ESR1 hotspot mutations were analyzed using droplet digital PCR. CfDNA concentrations were calculated using internal control copies from the ESR1 mutation test. Immunocytochemistry was performed to compare c-MET overexpression between primary and metastatic sites. RESULTS The proportion of c-MET overexpression was significantly higher in metastatic sites than in primary sites (p = 0.00002). Survival analysis showed that c-MET+ CTC, cfDNA concentration, and ESR1 mutations were significantly associated with poor prognosis (p = 0.0026, 0.0021, and 0.0064, respectively) in HR+/HER2- mBC. By contrast, EpCAM-positive CTC (EpCAM+ CTC) and PIK3CA mutations were not associated with progression-free survival (PFS) in HR+/HER2- mBC. Multivariate analyses revealed that c-MET+ CTCs and cfDNA concentration were independent predictors of PFS in HR+/HER2- mBC. CONCLUSIONS Monitoring c-MET+ CTC, rather than assessing c-MET expression in the primary BC site, could provide valuable information for predicting disease progression, as c-MET expression can change during treatment. The c-MET+ CTC count and cfDNA concentration could provide complementary information on disease progression in HR+ /HER2- mBC, highlighting the importance of integrated liquid biopsy.
Collapse
Grants
- HI19C0141 Ministry of Health & Welfare, South Korea
- HI19C0141 Ministry of Health & Welfare, South Korea
- HI19C0141 Ministry of Health & Welfare, South Korea
- HI19C0141 Ministry of Health & Welfare, South Korea
- HI19C0141 Ministry of Health & Welfare, South Korea
- 2022R1A2C2006322 Ministry of Science and ICT, South Korea
- 2022R1A2C2006322 Ministry of Science and ICT, South Korea
- 2022R1A2C2006322 Ministry of Science and ICT, South Korea
- 2022R1A2C2006322 Ministry of Science and ICT, South Korea
- 2022R1A2C2006322 Ministry of Science and ICT, South Korea
- 2022R1A2C2006322 Ministry of Science and ICT, South Korea
- #SMO1230021 Samsung Medical Center
Collapse
Affiliation(s)
- Jieun Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun Sol Chang
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Laboratory of Molecular Pathology and Theranostics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji-Yeon Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Chaithanya Chelakkot
- Technical Research Center, Genobio Corp., Seoul, Republic of Korea
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Minjung Sung
- Laboratory of Molecular Pathology and Theranostics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji-Young Song
- Laboratory of Molecular Pathology and Theranostics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyungsoo Jung
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Ji Hye Lee
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | | | - Na Young Kim
- R&D Center, ABION Inc., Seoul, Republic of Korea
| | - Hyegyeong Lee
- Central Laboratory, LOGONE Bio-Convergence Research Foundation, Seoul, Republic of Korea
| | - Mi-Ran Kang
- R&D Center, Gencurix Inc., Seoul, Republic of Korea
| | - Mi Jeong Kwon
- Vessel-Organ Interaction Research Center (MRC), College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Young Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
- R&D Center, ABION Inc., Seoul, Republic of Korea.
| | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul, 06351, Republic of Korea.
| | - Yoon-La Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
- Laboratory of Molecular Pathology and Theranostics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
8
|
Yuan P, Xue X, Qiu T, Ying J. MET alterations detection platforms and clinical implications in solid tumors: a comprehensive review of literature. Ther Adv Med Oncol 2024; 16:17588359231221910. [PMID: 38249331 PMCID: PMC10798113 DOI: 10.1177/17588359231221910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
MET alterations, including MET exon 14 skipping variants, MET amplification, MET overexpression, and MET fusion, play pivotal roles in primary tumorigenesis and acquired resistance to targeted therapies, especially EGFR tyrosine kinase inhibitors. They represent important diagnostic, prognostic, and predictive biomarkers in many solid tumor types. However, the detection of MET alterations is challenging due to the complexity of MET alterations and the diversity of platform technologies. Therefore, techniques with high sensitivity, specificity, and reliable molecular detection accuracy are needed to overcome such hindrances and aid in biomarker-guided therapies. The current review emphasizes the role of MET alterations as oncogenic drivers in a variety of cancers and their involvement in the development of resistance to targeted therapies. Moreover, our review provides an overview of and recommendations on the selection of various cross-platform technologies for the detection of MET exon 14 skipping variants, MET amplification, MET overexpression, and MET fusion. Furthermore, challenges and hurdles underlying these common detection platforms are discussed.
Collapse
Affiliation(s)
- Pei Yuan
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuemin Xue
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian Qiu
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| |
Collapse
|
9
|
Jaradat SK, Ayoub NM, Al Sharie AH, Aldaod JM. Targeting Receptor Tyrosine Kinases as a Novel Strategy for the Treatment of Triple-Negative Breast Cancer. Technol Cancer Res Treat 2024; 23:15330338241234780. [PMID: 38389413 PMCID: PMC10894558 DOI: 10.1177/15330338241234780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/07/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Triple-negative breast cancer (TNBC) comprises a group of aggressive and heterogeneous breast carcinoma. Chemotherapy is the mainstay for the treatment of triple-negative tumors. Nevertheless, the success of chemotherapeutic treatments is limited by their toxicity and development of acquired resistance leading to therapeutic failure and tumor relapse. Hence, there is an urgent need to explore novel targeted therapies for TNBC. Receptor tyrosine kinases (RTKs) are a family of transmembrane receptors that are key regulators of intracellular signaling pathways controlling cell proliferation, differentiation, survival, and motility. Aberrant activity and/or expression of several types of RTKs have been strongly connected to tumorigenesis. RTKs are frequently overexpressed and/or deregulated in triple-negative breast tumors and are further associated with tumor progression and reduced survival in patients. Therefore, targeting RTKs could be an appealing therapeutic strategy for the treatment of TNBC. This review summarizes the current evidence regarding the antitumor activity of RTK inhibitors in preclinical models of TNBC. The review also provides insights into the clinical trials evaluating the use of RTK inhibitors for the treatment of patients with TNBC.
Collapse
Affiliation(s)
- Sara K. Jaradat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Nehad M. Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Ahmed H. Al Sharie
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Julia M. Aldaod
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| |
Collapse
|
10
|
Sánchez-León ML, Jiménez-Cortegana C, Silva Romeiro S, Garnacho C, de la Cruz-Merino L, García-Domínguez DJ, Hontecillas-Prieto L, Sánchez-Margalet V. Defining the Emergence of New Immunotherapy Approaches in Breast Cancer: Role of Myeloid-Derived Suppressor Cells. Int J Mol Sci 2023; 24:5208. [PMID: 36982282 PMCID: PMC10048951 DOI: 10.3390/ijms24065208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Breast cancer (BC) continues to be the most diagnosed tumor in women and a very heterogeneous disease both inter- and intratumoral, mainly given by the variety of molecular profiles with different biological and clinical characteristics. Despite the advancements in early detection and therapeutic strategies, the survival rate is low in patients who develop metastatic disease. Therefore, it is mandatory to explore new approaches to achieve better responses. In this regard, immunotherapy arose as a promising alternative to conventional treatments due to its ability to modulate the immune system, which may play a dual role in this disease since the relationship between the immune system and BC cells depends on several factors: the tumor histology and size, as well as the involvement of lymph nodes, immune cells, and molecules that are part of the tumor microenvironment. Particularly, myeloid-derived suppressor cell (MDSC) expansion is one of the major immunosuppressive mechanisms used by breast tumors since it has been associated with worse clinical stage, metastatic burden, and poor efficacy of immunotherapies. This review focuses on the new immunotherapies in BC in the last five years. Additionally, the role of MDSC as a therapeutic target in breast cancer will be described.
Collapse
Affiliation(s)
- María Luisa Sánchez-León
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carlos Jiménez-Cortegana
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Silvia Silva Romeiro
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carmen Garnacho
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Daniel J. García-Domínguez
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Víctor Sánchez-Margalet
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
11
|
Cazes A, Childers BG, Esparza E, Lowy AM. The MST1R/RON Tyrosine Kinase in Cancer: Oncogenic Functions and Therapeutic Strategies. Cancers (Basel) 2022; 14:cancers14082037. [PMID: 35454943 PMCID: PMC9027306 DOI: 10.3390/cancers14082037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary MST1R/RON receptor tyrosine kinase is a highly conserved transmembrane protein present on epithelial cells, macrophages, and recently identified in a T-cell subset. RON activation attenuates inflammation in healthy tissue. Interestingly, it is overexpressed in several epithelial neoplasms with increasing levels of expression associated with worse outcomes. Though the mechanisms involved are still under investigation, RON is involved in carcinogenesis via immune modulation of the immune tumor microenvironment, activation of numerous oncogenic pathways, and is protective under cellular stress. Alternatively, inhibition of RON abrogates tumor progression in both animal and human tissue models. Given this, RON is a targetable protein of great interest for cancer treatment. Here, we review RON’s function in tissue inflammation and cancer progression, and review cancer clinical trials to date that have used agents targeting RON signaling. Abstract The MST1R/RON receptor tyrosine kinase is a homologue of the more well-known MET receptor. Like MET, RON orchestrates cell signaling pathways that promote oncogenesis and enable cancer cell survival; however, it has a more unique role in the regulation of inflammation. RON was originally described as a transmembrane receptor expressed on tissue resident macrophages and various epithelial cells. RON is overexpressed in a variety of cancers and its activation modifies multiple signaling pathways with resultant changes in epithelial and immune cells which together modulate oncogenic phenotypes. While several RON isoforms have been identified with differences in structure, activation, and pathway regulation, increased RON expression and/or activation is consistently associated with worse outcomes. Tyrosine kinase inhibitors targeting RON have been developed, making RON an actionable therapeutic target.
Collapse
|
12
|
Hudson R, Yao HP, Suthe SR, Patel D, Wang MH. Antibody-Drug Conjugate PCMC1D3-Duocarmycin SA as a Novel Therapeutic Entity for Targeted Treatment of Cancers Aberrantly Expressing MET Receptor Tyrosine Kinase. Curr Cancer Drug Targets 2021; 22:312-327. [PMID: 34951367 DOI: 10.2174/1568009621666211222154129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/11/2021] [Accepted: 11/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aberrant expression of the MET receptor tyrosine kinase is an oncogenic determinant and a drug target for cancer therapy. Currently, antibody-based biotherapeutics targeting MET are under clinical trials. OBJECTIVE Here we report the preclinical and therapeutic evaluation of a novel anti-MET antibody-drug conjugate PCMC1D3-duocarmycin SA (PCMC1D3-DCM) for targeted cancer therapy. METHODS The monoclonal antibody PCMC1D3 (IgG1a/κ), generated by a hybridoma technique and specific to one of the MET extracellular domains, was selected based on its high specificity to human MET with a binding affinity of 1.60 nM. PCMC1D3 was conjugated to DCM via a cleavable valine-citrulline dipeptide linker to form an antibody-drug conjugate with a drug-to-antibody ratio of 3.6:1. PCMC1D3-DCM in vitro rapidly induced MET internalization with an internalization efficacy ranging from 6.5 to 17.2h dependent on individual cell lines. RESULTS Studies using different types of cancer cell lines showed that PCMC1D3-DCM disrupted cell cycle, reduced cell viability, and caused massive cell death within 96h after treatment initiation. The calculated IC50 values for cell viability reduction were 1.5 to 15.3 nM. Results from mouse xenograft tumor models demonstrated that PCMC1D3-DCM in a single dose injection at 10 mg/kg body weight effectively delayed xenograft tumor growth up to two weeks without signs of tumor regrowth. The calculated tumoristatic concentration, a minimal dose required to balance tumor growth and inhibition, was around 2 mg/kg bodyweight. Taken together, PCMC1D3-DCM was effective in targeting inhibition of tumor growth in xenograft models. CONCLUSION This work provides the basis for the development of humanized PCMC1D3-DCM for MET-targeted cancer therapy in the future.
Collapse
Affiliation(s)
- Rachel Hudson
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou . United States
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou . United States
| | - Sreedhar Reddy Suthe
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX. United States
| | - Dhavalkumar Patel
- Pharmaceutical Research Core, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX. United States
| | - Ming-Hai Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou . United States
| |
Collapse
|
13
|
Al-Taie Z, Hannink M, Mitchem J, Papageorgiou C, Shyu CR. Drug Repositioning and Subgroup Discovery for Precision Medicine Implementation in Triple Negative Breast Cancer. Cancers (Basel) 2021; 13:6278. [PMID: 34944904 PMCID: PMC8699385 DOI: 10.3390/cancers13246278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/29/2022] Open
Abstract
Breast cancer (BC) is the leading cause of death among female patients with cancer. Patients with triple-negative breast cancer (TNBC) have the lowest survival rate. TNBC has substantial heterogeneity within the BC population. This study utilized our novel patient stratification and drug repositioning method to find subgroups of BC patients that share common genetic profiles and that may respond similarly to the recommended drugs. After further examination of the discovered patient subgroups, we identified five homogeneous druggable TNBC subgroups. A drug repositioning algorithm was then applied to find the drugs with a high potential for each subgroup. Most of the top drugs for these subgroups were chemotherapy used for various types of cancer, including BC. After analyzing the biological mechanisms targeted by these drugs, ferroptosis was the common cell death mechanism induced by the top drugs in the subgroups with neoplasm subdivision and race as clinical variables. In contrast, the antioxidative effect on cancer cells was the common targeted mechanism in the subgroup of patients with an age less than 50. Literature reviews were used to validate our findings, which could provide invaluable insights to streamline the drug repositioning process and could be further studied in a wet lab setting and in clinical trials.
Collapse
Affiliation(s)
- Zainab Al-Taie
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; (Z.A.-T.); (J.M.)
- Department of Computer Science, College of Science for Women, University of Baghdad, Baghdad 10070, Iraq
| | - Mark Hannink
- Department of Biochemistry, University of Missouri, Columbia, Missouri, MO 65211, USA;
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | - Jonathan Mitchem
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; (Z.A.-T.); (J.M.)
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Department of Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Christos Papageorgiou
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Chi-Ren Shyu
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; (Z.A.-T.); (J.M.)
- Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO 65211, USA
- Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
14
|
Yu Q, Wang J, Li T, Xu X, Guo X, Ding S, Zhu L, Zou G, Chen Y, Zhang X. RON Mediates Tumor-Promoting Effects in Endometrial Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2282916. [PMID: 34712728 PMCID: PMC8548096 DOI: 10.1155/2021/2282916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022]
Abstract
Endometrial adenocarcinoma is one of the most prevalent female reproductive tract cancers in the world, and the development of effective treatment is still the main goal of its current research. Epithelial-mesenchymal transition (EMT) plays a significant part in the occurrence and development of epithelial carcinoma, including endometrial adenocarcinoma. Recepteur d'origine nantais (RON) induces EMT and promotes proliferation, migration, and invasion in various epithelial-derived cancers, but its role in endometrial adenocarcinoma is still poorly studied. The purpose of this study is to verify the overexpression of RON in endometrial adenocarcinoma and to explore its specific roles. RON expression in tumor lesions was verified by immunohistochemical staining, HEC-1B cells were used to construct stable cell lines with RON overexpression or knockdown to investigate the effects of RON on the function of endometrial adenocarcinoma cells, and xenotransplantation experiment was carried out in nude mice to explore the effect of RON on the growth of endometrial adenocarcinoma in vivo. This study revealed that RON could promote the proliferation, migration, and invasion of HEC-1B cells and induce EMT, and these effects were regulated through the Smad pathway. RON overexpression could promote growth of endometrial adenocarcinoma cells in nude mice, while its inhibitor BMS777607 could restrict this role. RON played an important role in endometrial adenocarcinoma and had a potential to become a new therapeutic target for endometrial adenocarcinoma.
Collapse
Affiliation(s)
- Qin Yu
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006 Zhejiang, China
| | - Jianzhang Wang
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006 Zhejiang, China
| | - Tiantian Li
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006 Zhejiang, China
| | - Xinxin Xu
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006 Zhejiang, China
| | - Xinyue Guo
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006 Zhejiang, China
| | - Shaojie Ding
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006 Zhejiang, China
| | - Libo Zhu
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006 Zhejiang, China
| | - Gen Zou
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006 Zhejiang, China
| | - Yichen Chen
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006 Zhejiang, China
- Ningbo Institution of Medical Science, Ningbo, 315000 Zhejiang, China
| | - Xinmei Zhang
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006 Zhejiang, China
| |
Collapse
|
15
|
MicroRNA Expression Profiling of Lung Cancer with Differential Expression of the RON Receptor Tyrosine Kinase. JOURNAL OF ONCOLOGY 2021; 2021:5670675. [PMID: 34603447 PMCID: PMC8486515 DOI: 10.1155/2021/5670675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022]
Abstract
Background The Ron receptor tyrosine kinase (RON) can act as a protooncogene and may play a prominent role in the initiation and development of lung cancer. microRNAs (miRNA) are master regulators of gene expression through direct or indirect regulation, and impact all aspects of cell biology. Methods Nonsmall-cell lung cancer (NSCLC) samples and small-cell lung cancer (SCLC) were stratified based on RON expression to identify miRNA profiles associated with RON expression levels, differentially expressed miRNA regulated by RON were screened out, and their biological behavior was analyzed. Results miRNA expression was most significantly affected by cancer type, and we found 85 miRNAs that were significantly differentially expressed between NSCLC and SCLC. There were 46 miRNAs differentially expressed between high RON expressing NSCLC compared to low RON expressing NSCLC. Biological processes and pathways found to be significantly influenced by RON expression included epithelial-mesenchymal transition (EMT) and activation of the PI3K-Akt and MAPK signaling pathways. Conclusions These data may provide the basis for a novel strategy to characterize lung cancer by RON expression and microRNA genotyping.
Collapse
|
16
|
Weng T, Yan D, Shi D, Zhu M, Liu Y, Wu Z, Tang T, Zhu L, Zhang H, Yao H, Li L. The MSP-RON pathway regulates liver fibrosis through transforming growth factor beta-dependent epithelial-mesenchymal transition. Liver Int 2021; 41:1956-1968. [PMID: 33786995 DOI: 10.1111/liv.14892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/28/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Liver fibrosis is pathologically important in the liver cirrhosis progression. The epithelial-mesenchymal transition (EMT) is crucial for organ fibrosis. Macrophage-stimulating protein (MSP) and its receptor tyrosine kinase, RON, promote cellular EMT. However, their role in liver fibrosis is unclear. Here, we clarify the biological profile, potential mechanisms and therapeutic targets of the MSP-RON pathway in liver fibrosis. MATERIALS AND METHODS Macrophage-stimulating protein expression and its correlation with clinicopathological characteristics of cirrhosis were evaluated in 57 clinical cases and a control group. The effect of MSP-RON pathway in liver fibrosis was determined in vitro and in vivo. The therapeutic effects of MSP or RON inhibition on liver fibrosis were evaluated in a mouse liver fibrosis model. RESULTS Macrophage-stimulating protein is upregulated in liver cirrhosis, which was associated with poor patient prognosis. The MSP-RON pathway promoted hepatocytes EMT. MSP-RON-induced EMT depends on the transforming growth factor beta (TGF-β) pathway and is regulated by TGF-β inhibitors. In animal models, an MSP blocking antibody and a small molecule inhibitor of RON, BMS-777607, both inhibited liver fibrosis progression. CONCLUSION Our study revealed that MSP is an important biomarker in liver cirrhosis progression and can be used to prognose patients. The MSP-RON pathway promotes the EMT of hepatocytes and the progress of fibrosis via a TGF-β related pathway. Consequently, we identified a new treatment strategy for liver cirrhosis through targeted inhibition of MSP/RON. This research increases the understanding of EMT-modulated liver fibrosis and provides new insights into biomarkers and therapeutic targets of liver fibrosis.
Collapse
Affiliation(s)
- Tianhao Weng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dong Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Danrong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Miaojin Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yizhi Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhigang Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Taoming Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Linwei Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Liao M, Zhang J, Wang G, Wang L, Liu J, Ouyang L, Liu B. Small-Molecule Drug Discovery in Triple Negative Breast Cancer: Current Situation and Future Directions. J Med Chem 2021; 64:2382-2418. [PMID: 33650861 DOI: 10.1021/acs.jmedchem.0c01180] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, but an effective targeted therapy has not been well-established so far. Considering the lack of effective targets, where do we go next in the current TNBC drug development? A promising intervention for TNBC might lie in de novo small-molecule drugs that precisely target different molecular characteristics of TNBC. However, an ideal single-target drug discovery still faces a huge challenge. Alternatively, other new emerging strategies, such as dual-target drug, drug repurposing, and combination strategies, may provide new insight into the improvement of TNBC therapeutics. In this review, we focus on summarizing the current situation of a series of candidate small-molecule drugs in TNBC therapy, including single-target drugs, dual-target drugs, as well as drug repurposing and combination strategies that will together shed new light on the future directions targeting TNBC vulnerabilities with small-molecule drugs for future therapeutic purposes.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Leiming Wang
- The Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Pharmaceutical strategies in the emerging era of antibody-based biotherapeutics for the treatment of cancers overexpressing MET receptor tyrosine kinase. Drug Discov Today 2020; 26:106-121. [PMID: 33171292 DOI: 10.1016/j.drudis.2020.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/23/2020] [Accepted: 11/03/2020] [Indexed: 12/26/2022]
Abstract
Pharmaceutical innovation in the development of novel antibody-based biotherapeutics with increased therapeutic indexes makes MET-targeted cancer therapy a clinical reality.
Collapse
|
19
|
Peng W, Li JD, Zeng JJ, Zou XP, Tang D, Tang W, Rong MH, Li Y, Dai WB, Tang ZQ, Feng ZB, Chen G. Clinical value and potential mechanisms of COL8A1 upregulation in breast cancer: a comprehensive analysis. Cancer Cell Int 2020; 20:392. [PMID: 32818022 PMCID: PMC7427770 DOI: 10.1186/s12935-020-01465-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
Background The situation faced by breast cancer patients, especially those with triple-negative breast cancer, is still grave. More effective therapeutic targets are needed to optimize the clinical management of breast cancer. Although collagen type VIII alpha 1 chain (COL8A1) has been shown to be downregulated in BRIP1-knockdown breast cancer cells, its clinical role in breast cancer remains unknown. Methods Gene microarrays and mRNA sequencing data were downloaded and integrated into larger matrices based on various platforms. Therefore, this is a multi-centered study, which contains 5048 breast cancer patients and 1161 controls. COL8A1 mRNA expression in breast cancer was compared between molecular subtypes. In-house immunohistochemistry staining was used to evaluate the protein expression of COL8A1 in breast cancer. A diagnostic test was performed to assess its clinical value. Furthermore, based on differentially expressed genes (DEGs) and co-expressed genes (CEGs) positively related to COL8A1, functional enrichment analyses were performed to explore the biological function and potential molecular mechanisms of COL8A1 underlying breast cancer. Results COL8A1 expression was higher in breast cancer patients than in control samples (standardized mean difference = 0.79; 95% confidence interval [CI] 0.55–1.03). Elevated expression was detected in various molecular subtypes of breast cancer. An area under a summary receiver operating characteristic curve of 0.80 (95% CI 0.76–0.83) with sensitivity of 0.77 (95% CI 0.69–0.83) and specificity of 0.70 (95% CI 0.61–0.78) showed moderate capacity of COL8A1 in distinguishing breast cancer patients from control samples. Worse overall survival was found in the higher than in the lower COL8A1 expression groups. Intersected DEGs and CEGs positively related to COL8A1 were significantly clustered in the proteoglycans in cancer and ECM-receptor interaction pathways. Conclusions Elevated COL8A1 may promote the migration of breast cancer by mediating the ECM-receptor interaction and synergistically interplaying with DEGs and its positively related CEGs independently of molecular subtypes. Several genes clustered in the proteoglycans in cancer pathway are potential targets for developing effective agents for triple-negative breast cancer.
Collapse
Affiliation(s)
- Wei Peng
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, NO.6, Shuangyong Road, Nanning, Guangxi 530021 People's Republic of China
| | - Jian-Di Li
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, NO.6, Shuangyong Road, Nanning, Guangxi 530021 People's Republic of China
| | - Jing-Jing Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, NO.6, Shuangyong Road, Nanning, Guangxi 530021 People's Republic of China
| | - Xiao-Ping Zou
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, NO.6, Shuangyong Road, Nanning, Guangxi 530021 People's Republic of China
| | - Deng Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, NO.6, Shuangyong Road, Nanning, Guangxi 530021 People's Republic of China
| | - Wei Tang
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, NO.71, Hedi Road, Nanning, Guangxi 530021 People's Republic of China
| | - Min-Hua Rong
- Department of Research, Guangxi Medical University Cancer Hospital, NO.71, Hedi Road, Nanning, Guangxi 530021 People's Republic of China
| | - Ying Li
- Department of Pathology, Qinzhou First People's Hospital, NO.8, Ming Yang Street, Qinzhou, Guangxi 535001 People's Republic of China
| | - Wen-Bin Dai
- Department of Pathology, Liuzhou People's Hospital, NO.8, Wenchang Road, Chengzhong District, Liuzhou, Guangxi 545006 People's Republic of China
| | - Zhong-Qing Tang
- Department of Pathology, Wuzhou Workers' Hospital, The Seventh Affiliated Hospital of Guangxi Medical University, NO.1, Nansanxiang Gaodi Road, Wuzhou, 543000 People's Republic of China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, NO.6, Shuangyong Road, Nanning, Guangxi 530021 People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, NO.6, Shuangyong Road, Nanning, Guangxi 530021 People's Republic of China
| |
Collapse
|