1
|
Dong T, Han C, Liu X, Wang Z, Wang Y, Kang Q, Wang P, Zhou F. Live Cells versus Fixated Cells: Kinetic Measurements of Biomolecular Interactions with the LigandTracer Method and Surface Plasmon Resonance Microscopy. Mol Pharm 2023; 20:2094-2104. [PMID: 36939457 DOI: 10.1021/acs.molpharmaceut.2c01047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Cell-based kinetic studies of ligand or candidate drug binding to membrane proteins have produced affinity and kinetic values that are different from measurements using purified proteins. However, ligand binding to fixated cells whose membrane constituents (e.g., proteins and their glycosylated forms) are partially connected by a cross-linking reagent has not been compared to that to live cells. Under the same experimental conditions for the LigandTracer method, we measured the interactions of fluorophore-labeled lectins and antibody molecules with glycans at HFF cells and the human epithelial growth receptor 2 at SKBR3 cells, respectively. In conjunction with surface plasmon resonance microscopy, the effects of labels and cell/sub-cell heterogeneity on binding kinetics were investigated. Our results revealed that, for cell constituents whose structures and functions are not closely dependent on cell viability, the ligand binding kinetics at fixated cells is only slightly different from that at live cells. The altered kinetics is explained on the basis of a less mobile receptor confined in a local environment created by partially interconnected protein molecules. We show that cell/sub-cell heterogeneity and labels on the ligands can alter the binding reaction more significantly. Thus, fixating cells not only simplifies experimental procedures for drug screening and renders assays more robust but also provides reliable kinetic information about drug binding to cell constituents whose structures are not changed by chemical fixation.
Collapse
Affiliation(s)
- Tianbao Dong
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Chaowei Han
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Xin Liu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Zhichao Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Yanhui Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Qing Kang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Pengcheng Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| |
Collapse
|
2
|
Simple method to determine the concentration and incorporation ratio of ruthenium-labeled antibodies. Bioanalysis 2021; 14:19-28. [PMID: 34809489 DOI: 10.4155/bio-2021-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Ruthenium-labeled antibodies are commonly used detection reagents in bioanalysis assays and must be characterized to ensure quality. The aim of this work was to develop a method to determine the concentration and incorporation ratio (the degree of labeling [DOL]) of ruthenium-labeled antibodies by UV/VIS spectroscopy. Materials & methods: Free SULFO-TAG compound was scanned using UV/VIS and showed an absorbance peak at 292 nm. In contrast, antibodies demonstrate UV absorbance at 280 nm. After experimentally determining the extinction coefficients at 280 and 292 nm of free ruthenium and antibody, we generated a formula based on the Beer-Lambert law that calculates both concentration and DOL of these ruthenium-labeled antibodies. Conclusion: The concentration and DOL values determined by our method were comparable to those determined from bicinchoninic acid and LC/MS for the same reagents. This method creates a faster and more accessible reagent characterization process that uses far less reagent than the more traditional alternatives.
Collapse
|
3
|
The importance of quality critical reagents for the entire developmental lifecycle of a biopharmaceutical: a pharmacokinetic case study. Bioanalysis 2021; 13:817-827. [PMID: 33769084 DOI: 10.4155/bio-2020-0253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background: High-quality critical reagents are essential to the successful support of biotherapeutic drug development regardless of the analytical platform used for support. The lack of such a reagent, early in the development lifecycle of a biotherapeutic can have detrimental impact on resource and translation of data across development phases. Results: Here, a pharmacokinetic assay case study is shared that illustrates what can occur when there is a lack of a reproducible and sustainable critical reagent early in the development lifecycle of a biotherapeutic. Various assay formats and critical reagents, as well as reagents generation programs, were initiated to find a reagent and assay format which was fit for purpose. Conclusions: Identification of appropriate critical reagents early in the development lifecycle of a biotherapeutic as advantageous.
Collapse
|
4
|
Ross GMS, Filippini D, Nielen MWF, Salentijn GI. Unraveling the Hook Effect: A Comprehensive Study of High Antigen Concentration Effects in Sandwich Lateral Flow Immunoassays. Anal Chem 2020; 92:15587-15595. [PMID: 33185097 PMCID: PMC7711776 DOI: 10.1021/acs.analchem.0c03740] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sandwich lateral flow immunoassays (LFIAs) are limited at high antigen concentrations by the hook effect, leading to a contradictory decrease in the test line (T) intensity and false-negative results. The hook effect is mainly associated with the loss of T, and research focuses on minimizing this effect. Nevertheless, the control line (C) intensity is also affected at higher analyte concentrations, undesirably influencing the T/C ratio in LFIA readers. The main aim of this work is to identify and understand these high antigen concentration effects in order to develop ubiquitous strategies to interpret and mitigate such effects. Four complementary experiments were performed: performance assessment of three different allergen LFIAs (two for hazelnut, one for peanut) over 0.075-3500 ppm, LFIAs with C only, surface plasmon resonance (SPR) binding experiments on the immobilized control antibody, and smartphone video recording of LFIAs during their development. As antigen concentrations increase, the C signal decreases before the T signal does, suggesting that distinct mechanisms underlie these intensity reductions. Reduced binding at the C occurred even in the absence of T, so the upfront T does not explain the loss of C. SPR confirmed that the C antibody favors binding with free labeled antibody compared with a labeled antibody-analyte complex, indicating that in antigen excess, binding is reduced at C before T. Finally, a smartphone-based video method was developed for dynamically monitoring the LFIA development in real time to distinguish between different concentration-dependent effects. Digitally analyzing the data allows clear differentiation of highly positive samples and false-negative samples and can indicate whether the LFIA is in the dynamic working range or at critically high concentrations. The aim of this work is to identify and understand such high antigen concentration effects in order to develop ubiquitous strategies to interpret and mitigate such effects.
Collapse
Affiliation(s)
- Georgina M S Ross
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, Wageningen 6700 AE, The Netherlands
| | - Daniel Filippini
- Optical Devices Laboratory, Division of Sensor and Actuator Systems, IFM-Linköping University, Linköping S58183, Sweden
| | - Michel W F Nielen
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, Wageningen 6700 AE, The Netherlands.,Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Gert Ij Salentijn
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, P.O. Box 230, Wageningen 6700 AE, The Netherlands.,Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
5
|
Yang K, Zhang Y, Chou R, Yeung L, Letarte S, Yang RS, Li X, Beaumont M, Gunawan R, Richardson D, Dellatore S, Woolf E, Xu Y. A Tiered Approach for Characterization to Ensure Quality, Reproducibility, and Long-Term Stability of Critical Reagents in Regulated Bioanalysis to Support PK/ADA/NAb Assays for Biologics and Vaccines Programs. ACS Pharmacol Transl Sci 2020; 3:1310-1317. [PMID: 33344904 DOI: 10.1021/acsptsci.0c00135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 12/29/2022]
Abstract
The robustness of good laboratory practice and clinical data is reliant upon a clear understanding of the bioanalytical assays. One of the most important components of ligand-binding based assays is critical reagents used to directly or indirectly measure biologic markers or signals. High quality, reproducible, sustainable critical reagents through the development lifecycle could avoid unnecessary rework, multiple validations, cross-validations, and ensure consistency of the data. Numerous analytical methods (UPLC-size exclusion chromatography, cation exchange chromatography, biacore/octet, and high-resolution mass spectrometry) have been evaluated by using current critical reagents. A comprehensive analytical toolbox of biochemical and biophysical methods has been employed to evaluate the quality of critical reagents and explore potential issues if there are any. Moving forward, this "tiered approach" of critical reagents characterization will be used not only to establish critical quality attributes for new reagents but also to evaluate stability in support of reagents recertification.
Collapse
Affiliation(s)
- Kun Yang
- Regulated Bioanalysis, Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Ying Zhang
- Biologics Analytical Research & Development, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Robert Chou
- Biologics Analytical Research & Development, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Lai Yeung
- Regulated Bioanalysis, Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Simon Letarte
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Rong-Sheng Yang
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Xuanwen Li
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Maribel Beaumont
- Discovery Bioanalysis, Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., 213 E Grand Avenue, South San Francisco, California 94080, United States
| | - Rico Gunawan
- Biologics Analytical Research & Development, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Douglas Richardson
- Analytical Research & Development Mass Spectrometry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Shara Dellatore
- Regulated Bioanalysis, Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Eric Woolf
- Regulated Bioanalysis, Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, WP75B-300, West Point, Pennsylvania 19486, United States
| | - Yang Xu
- Regulated Bioanalysis, Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, WP75B-300, West Point, Pennsylvania 19486, United States
| |
Collapse
|
6
|
Critical reagent screening and characterization: benefits and approaches for protein biomarker assays by hybrid LC–MS. Bioanalysis 2019; 11:785-795. [DOI: 10.4155/bio-2018-0277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In recent years, hybrid ligand-binding assays (LBAs)/LC–MS assays have been increasingly used for quantitation of protein biomarkers in biological matrices. However, unlike in LBAs where the importance of critical reagent screening and characterization is well understood and widely reported, benefits of well-characterized hybrid LC–MS assay reagents are frequently underestimated. Two groups of analyte-specific reagents, binding reagents and assay calibrators, are considered the critical reagents for biomarker assays. In this article, we summarize the similarities and differences of critical reagents used in LBAs and hybrid LC–MS assays, overview the benefits and approaches of critical reagent screening, characterization, antibody conjugation and discuss bioanalytical considerations in hybrid LC–MS assay development for robust measurements of protein biomarkers in biological matrices.
Collapse
|
7
|
Critical considerations for immunocapture enrichment LC–MS bioanalysis of protein therapeutics and biomarkers. Bioanalysis 2018; 10:987-995. [DOI: 10.4155/bio-2018-0062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, immunocapture enrichment coupled with LC–MS technology has seen more applications for the measurement of low abundant protein therapeutics and biomarkers in biological matrices. In this article, several critical considerations for the application of immunocapture enrichment to LC–MS bioanalysis of protein therapeutics and biomarkers, including reagent selection, reagent characterization, designing of capture format, etc. are discussed. All these considerations are critical in developing reliable and robust bioanalytical assays with high assay specificity and sensitivity. Successful examples using the immunocapture LC–MS approach in the quantification of biotherapeutic and low abundant protein biomarkers will also be discussed.
Collapse
|