1
|
Palmieri E, Kis Z, Ozanne J, Di Benedetto R, Ricchetti B, Massai L, Carducci M, Oldrini D, Gasperini G, Aruta MG, Rossi O, Kontoravdi C, Shah N, Mawas F, Micoli F. GMMA as an Alternative Carrier for a Glycoconjugate Vaccine against Group A Streptococcus. Vaccines (Basel) 2022; 10:1034. [PMID: 35891202 PMCID: PMC9324507 DOI: 10.3390/vaccines10071034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Group A Streptococcus (GAS) causes about 500,000 annual deaths globally, and no vaccines are currently available. The Group A Carbohydrate (GAC), conserved across all GAS serotypes, conjugated to an appropriate carrier protein, represents a promising vaccine candidate. Here, we explored the possibility to use Generalized Modules for Membrane Antigens (GMMA) as an alternative carrier system for GAC, exploiting their intrinsic adjuvant properties. Immunogenicity of GAC-GMMA conjugate was evaluated in different animal species in comparison to GAC-CRM197; and the two conjugates were also compared from a techno-economic point of view. GMMA proved to be a good alternative carrier for GAC, resulting in a higher immune response compared to CRM197 in different mice strains, as verified by ELISA and FACS analyses. Differently from CRM197, GMMA induced significant levels of anti-GAC IgG titers in mice also in the absence of Alhydrogel. In rabbits, a difference in the immune response could not be appreciated; however, antibodies from GAC-GMMA-immunized animals showed higher affinity toward purified GAC antigen compared to those elicited by GAC-CRM197. In addition, the GAC-GMMA production process proved to be more cost-effective, making this conjugate particularly attractive for low- and middle-income countries, where this pathogen has a huge burden.
Collapse
Affiliation(s)
- Elena Palmieri
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (E.P.); (R.D.B.); (B.R.); (L.M.); (M.C.); (D.O.); (G.G.); (M.G.A.); (O.R.)
| | - Zoltán Kis
- The Sargent Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (Z.K.); (C.K.); (N.S.)
- Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - James Ozanne
- The National Institute for Biological Standards and Control (NIBSC), South Mimms EN6 3QG, UK; (J.O.); (F.M.)
| | - Roberta Di Benedetto
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (E.P.); (R.D.B.); (B.R.); (L.M.); (M.C.); (D.O.); (G.G.); (M.G.A.); (O.R.)
| | - Beatrice Ricchetti
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (E.P.); (R.D.B.); (B.R.); (L.M.); (M.C.); (D.O.); (G.G.); (M.G.A.); (O.R.)
| | - Luisa Massai
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (E.P.); (R.D.B.); (B.R.); (L.M.); (M.C.); (D.O.); (G.G.); (M.G.A.); (O.R.)
| | - Martina Carducci
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (E.P.); (R.D.B.); (B.R.); (L.M.); (M.C.); (D.O.); (G.G.); (M.G.A.); (O.R.)
| | - Davide Oldrini
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (E.P.); (R.D.B.); (B.R.); (L.M.); (M.C.); (D.O.); (G.G.); (M.G.A.); (O.R.)
| | - Gianmarco Gasperini
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (E.P.); (R.D.B.); (B.R.); (L.M.); (M.C.); (D.O.); (G.G.); (M.G.A.); (O.R.)
| | - Maria Grazia Aruta
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (E.P.); (R.D.B.); (B.R.); (L.M.); (M.C.); (D.O.); (G.G.); (M.G.A.); (O.R.)
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (E.P.); (R.D.B.); (B.R.); (L.M.); (M.C.); (D.O.); (G.G.); (M.G.A.); (O.R.)
| | - Cleo Kontoravdi
- The Sargent Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (Z.K.); (C.K.); (N.S.)
| | - Nilay Shah
- The Sargent Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (Z.K.); (C.K.); (N.S.)
| | - Fatme Mawas
- The National Institute for Biological Standards and Control (NIBSC), South Mimms EN6 3QG, UK; (J.O.); (F.M.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (E.P.); (R.D.B.); (B.R.); (L.M.); (M.C.); (D.O.); (G.G.); (M.G.A.); (O.R.)
| |
Collapse
|
2
|
Thakur A, Tan Z, Kameyama T, El-Khateeb E, Nagpal S, Malone S, Jamwal R, Nwabufo CK. Bioanalytical strategies in drug discovery and development. Drug Metab Rev 2021; 53:434-458. [PMID: 34310243 DOI: 10.1080/03602532.2021.1959606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A reliable, rapid, and effective bioanalytical method is essential for the determination of the pharmacokinetic, pharmacodynamic, and toxicokinetic parameters that inform the safety and efficacy profile of investigational drugs. The overall goal of bioanalytical method development is to elucidate the procedure and operating conditions under which a method can sufficiently extract, qualify, and/or quantify the analyte(s) of interest and/or their metabolites for the intended purpose. Given the difference in the physicochemical properties of small and large molecule drugs, different strategies need to be adopted for the development of an effective and efficient bioanalytical method. Herein, we provide an overview of different sample preparation strategies, analytical platforms, as well as procedures for achieving high throughput for bioanalysis of small and large molecule drugs.
Collapse
Affiliation(s)
- Aarzoo Thakur
- Innovations in Food and Chemical Safety, Agency for Science, Technology, and Research, Singapore, Singapore.,Skin Research Institute of Singapore, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Zhiyuan Tan
- Department of Early Clinical Development, dMed-Clinipace, Shanghai, China
| | - Tsubasa Kameyama
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Eman El-Khateeb
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK.,Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Shakti Nagpal
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | | | - Rohitash Jamwal
- College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | | |
Collapse
|
3
|
Application of the Gyrolab microfluidic platform to measure picomolar affinity of a PD-L1-binding Adnectin™ radioligand for positron emission tomography. Biotechniques 2020; 69:200-205. [PMID: 32672060 DOI: 10.2144/btn-2020-0080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Advances in in vitro display and protein engineering yield therapeutics with affinities in the picomolar range. The Gyrolab® microfluidics platform uses the kinetic exclusion assay principle to measure subnanomolar solution affinities. This work describes application of the Gyrolab solution affinity module and the new multi-curve analysis feature to determine affinity of the PD-L1 Adnectin™ positron emission tomography radioligand, which was measured as 20 pM for human PD-L1. We also report key parameters that affect assay signal-to-background ratio and data quality, such as detection reagent concentration. Gyrolab offers the necessary throughput for rapid assay development with low sample consumption, as demonstrated in this study, which also provides helpful tips for assay optimization for solution affinity measurement.
Collapse
|
4
|
Iwamoto N, Takanashi M, Shimada T, Sasaki J, Hamada A. Comparison of Bevacizumab Quantification Results in Plasma of Non-small Cell Lung Cancer Patients Using Bioanalytical Techniques Between LC-MS/MS, ELISA, and Microfluidic-based Immunoassay. AAPS JOURNAL 2019; 21:101. [DOI: 10.1208/s12248-019-0369-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/27/2019] [Indexed: 12/15/2022]
|