1
|
Volpi N, Galeotti F, Gatto F. High-throughput glycosaminoglycan extraction and UHPLC-MS/MS quantification in human biofluids. Nat Protoc 2025; 20:843-860. [PMID: 39543382 DOI: 10.1038/s41596-024-01078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 09/24/2024] [Indexed: 11/17/2024]
Abstract
Glycosaminoglycans (GAGs) are linear, unbranched heteropolysaccharides whose structural complexity determines their function. Accurate quantification of GAGs in biofluids at high throughput is relevant for numerous biomedical applications. However, because of the structural variability of GAGs in biofluids, existing protocols require complex pre-analytical procedures, have limited throughput and lack accuracy. Here, we describe the extraction and quantification of GAGs by using ultra-high-performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-MS/MS). Designed for 96-well plates, this method enables the processing of up to 82 study samples per plate, with the remaining 14 wells used for calibrators and controls. Key steps include the enzymatic depolymerization of GAGs, their derivatization with 2-aminoacridone and their quantification via UHPLC-MS/MS. Each plate can be analyzed in a single UHPLC-MS/MS run, offering the quantitative and scalable analysis of 17 disaccharides from chondroitin sulfate, heparan sulfate and hyaluronic acid, with a level of precision and reproducibility sufficient for their use as biomarkers. The procedure from sample thawing to initiating the UHPLC-MS/MS run can be completed in ~1.5 d plus 15 min of MS runtime per sample, and it is structured to fit within ordinary working shifts, thus making it a valuable tool for clinical laboratories seeking high-throughput analysis of GAGs. The protocol requires expertise in UHPLC-MS/MS.
Collapse
Affiliation(s)
- Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Fabio Galeotti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Gatto
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
2
|
Kawai T, Matsumori N, Otsuka K. Recent advances in microscale separation techniques for lipidome analysis. Analyst 2021; 146:7418-7430. [PMID: 34787600 DOI: 10.1039/d1an00967b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review paper highlights the recent research on liquid-phase microscale separation techniques for lipidome analysis over the last 10 years, mainly focusing on capillary liquid chromatography (LC) and capillary electrophoresis (CE) coupled with mass spectrometry (MS). Lipids are one of the most important classes of biomolecules which are involved in the cell membrane, energy storage, signal transduction, and so on. Since lipids include a variety of hydrophobic compounds including numerous structural isomers, lipidomes are a challenging target in bioanalytical chemistry. MS is the key technology that comprehensively identifies lipids; however, separation techniques like LC and CE are necessary prior to MS detection in order to avoid ionization suppression and resolve structural isomers. Separation techniques using μm-scale columns, such as a fused silica capillary and microfluidic device, are effective at realizing high-resolution separation. Microscale separation usually employs a nL-scale flow, which is also compatible with nanoelectrospray ionization-MS that achieves high sensitivity. Owing to such analytical advantages, microscale separation techniques like capillary/microchip LC and CE have been employed for more than 100 lipidome studies. Such techniques are still being evolved and achieving further higher resolution and wider coverage of lipidomes. Therefore, microscale separation techniques are promising as the fundamental technology in next-generation lipidome analysis.
Collapse
Affiliation(s)
- Takayuki Kawai
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
3
|
Donohoo KB, Wang J, Goli M, Yu A, Peng W, Hakim MA, Mechref Y. Advances in mass spectrometry-based glycomics-An update covering the period 2017-2021. Electrophoresis 2021; 43:119-142. [PMID: 34505713 DOI: 10.1002/elps.202100199] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022]
Abstract
The wide variety of chemical properties and biological functions found in proteins is attained via post-translational modifications like glycosylation. Covalently bonded to proteins, glycans play a critical role in cell activity. Complex structures with microheterogeneity, the glycan structures that are associated with proteins are difficult to analyze comprehensively. Recent advances in sample preparation methods, separation techniques, and MS have facilitated the quantitation and structural elucidation of glycans. This review focuses on highlighting advances in MS-based techniques for glycomic analysis that occurred over the last 5 years (2017-2021) as an update to the previous review on the subject. The topics of discussion will include progress in glycomic workflow such as glycan release, purification, derivatization, and separation as well as the topics of ionization, tandem MS, and separation techniques that can be coupled with MS. Additionally, bioinformatics tools used for the analysis of glycans will be described.
Collapse
Affiliation(s)
- Kaitlyn B Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Md Abdul Hakim
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| |
Collapse
|
4
|
Lee J, Hwang H, Kim S, Hwang J, Yoon J, Yin D, Choi SI, Kim YH, Kim YS, An HJ. Comprehensive Profiling of Surface Gangliosides Extracted from Various Cell Lines by LC-MS/MS. Cells 2019; 8:cells8111323. [PMID: 31717732 PMCID: PMC6912501 DOI: 10.3390/cells8111323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/20/2019] [Accepted: 10/23/2019] [Indexed: 12/26/2022] Open
Abstract
Gangliosides act as a surface marker at the outer cellular membrane and play key roles in cancer cell invasion and metastasis. Despite the biological importance of gangliosides, they have been still poorly characterized due to the lack of effective analytical tools. Herein, we performed molecular profiling and structural elucidation of intact gangliosides in various cell lines including CFPAC1, A549, NCI-H358, MCF7, and Caski. We identified and quantified a total of 76 gangliosides on cell membrane using C18 LC-MS/MS. Gangliosides found in each cell line exhibited high complexity and diversity both qualitatively and quantitatively. The most abundant species was GM3(d34:1) in CFPAC1, NCI-H358, and MCF7, while GM2(d34:1) and GM1(d34:1) were major components in A549 and Caski, respectively. Notably, glycan moieties showed more diversity between cancer cell lines than ceramide moieties. In addition, noncancerous pancreatic cell line (hTERT/HPNE) could be distinguished by gangliosides containing different levels of sialic acid compared with cancerous pancreatic cell line (CFPAC1). These results clearly demonstrated the feasibility of our analytical platform to comprehensive profile of cell surface gangliosides for identifying cell types and subgrouping cancer cell types.
Collapse
Affiliation(s)
- Jua Lee
- Graduate School of Analytical Science & Technology, Chungnam National University, Daejeon 34134, Korea; (J.L.); (S.K.); (J.H.); (J.Y.); (D.Y.)
- Asia-Pacific Glycomics Reference Site, Daejeon 34134, Korea
| | - Heeyoun Hwang
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Cheongju-si 28119, Korea;
| | - Sumin Kim
- Graduate School of Analytical Science & Technology, Chungnam National University, Daejeon 34134, Korea; (J.L.); (S.K.); (J.H.); (J.Y.); (D.Y.)
- Asia-Pacific Glycomics Reference Site, Daejeon 34134, Korea
| | - Jaeyun Hwang
- Graduate School of Analytical Science & Technology, Chungnam National University, Daejeon 34134, Korea; (J.L.); (S.K.); (J.H.); (J.Y.); (D.Y.)
- Asia-Pacific Glycomics Reference Site, Daejeon 34134, Korea
| | - Jaekyung Yoon
- Graduate School of Analytical Science & Technology, Chungnam National University, Daejeon 34134, Korea; (J.L.); (S.K.); (J.H.); (J.Y.); (D.Y.)
- Asia-Pacific Glycomics Reference Site, Daejeon 34134, Korea
| | - Dongtan Yin
- Graduate School of Analytical Science & Technology, Chungnam National University, Daejeon 34134, Korea; (J.L.); (S.K.); (J.H.); (J.Y.); (D.Y.)
- Asia-Pacific Glycomics Reference Site, Daejeon 34134, Korea
| | - Sun Il Choi
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea; (S.I.C.); (Y.-H.K.)
| | - Yun-Hee Kim
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea; (S.I.C.); (Y.-H.K.)
| | - Yong-Sam Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea;
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Yuseong-gu, Daejeon 34113, Korea
| | - Hyun Joo An
- Graduate School of Analytical Science & Technology, Chungnam National University, Daejeon 34134, Korea; (J.L.); (S.K.); (J.H.); (J.Y.); (D.Y.)
- Asia-Pacific Glycomics Reference Site, Daejeon 34134, Korea
- Correspondence: ; Tel.: +82-42-821-8552
| |
Collapse
|
5
|
Wong M, Xu G, Park D, Barboza M, Lebrilla CB. Intact glycosphingolipidomic analysis of the cell membrane during differentiation yields extensive glycan and lipid changes. Sci Rep 2018; 8:10993. [PMID: 30030471 PMCID: PMC6054638 DOI: 10.1038/s41598-018-29324-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/05/2018] [Indexed: 11/09/2022] Open
Abstract
Glycosphingolipids (GSLs) are found in cellular membranes of most organisms and play important roles in cell-cell recognition, signaling, growth, and adhesion, among others. A method based on nanoflow high performance liquid chromatography-chip-quadrupole-time-of-flight mass spectrometry (nanoHPLC Chip-Q-TOF MS) was applied towards identifying and quantifying intact GSLs from a variety of samples, including cultured cell lines and animal tissue. The method provides the composition and sequence of the glycan, as well as variations in the ceramide portion of the GSL. It was used to profile the changes in the glycolipidome of Caco-2 cells as they undergo differentiation. A total of 226 unique GSLs were found among Caco-2 samples from five differentiation time-points. The method provided a comprehensive glycolipidomic profile of a cell during differentiation to yield the dynamic variation of intact GSL structures.
Collapse
Affiliation(s)
- Maurice Wong
- Department of Chemistry, University of California, Davis, 1 Shields Ave., Davis, California, 95616, USA
| | - Gege Xu
- Department of Chemistry, University of California, Davis, 1 Shields Ave., Davis, California, 95616, USA
| | - Dayoung Park
- Department of Chemistry, University of California, Davis, 1 Shields Ave., Davis, California, 95616, USA
| | - Mariana Barboza
- Department of Chemistry, University of California, Davis, 1 Shields Ave., Davis, California, 95616, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, 1 Shields Ave., Davis, California, 95616, USA.
| |
Collapse
|
6
|
Affiliation(s)
- Xilong Yuan
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| | - Richard D Oleschuk
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
7
|
Veillon L, Huang Y, Peng W, Dong X, Cho BG, Mechref Y. Characterization of isomeric glycan structures by LC-MS/MS. Electrophoresis 2017; 38:2100-2114. [PMID: 28370073 PMCID: PMC5581235 DOI: 10.1002/elps.201700042] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/21/2017] [Accepted: 03/12/2017] [Indexed: 12/12/2022]
Abstract
The characterization of glycosylation is critical for obtaining a comprehensive view of the regulation and functions of glycoproteins of interest. Due to the complex nature of oligosaccharides, stemming from variable compositions and linkages, and ion suppression effects, the chromatographic separation of glycans, including isomeric structures, is necessary for exhaustive characterization by MS. This review introduces the fundamental principles underlying the techniques in LC utilized by modern day glycomics researchers. Recent advances in porous graphitized carbon, reverse phase, ion exchange, and hydrophilic interaction LC utilized in conjunction with MS, for the characterization of protein glycosylation, are described with an emphasis on methods capable of resolving isomeric glycan structures.
Collapse
Affiliation(s)
- Lucas Veillon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | | | | | | | - Byeong G. Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| |
Collapse
|
8
|
Reversed-phase separation methods for glycan analysis. Anal Bioanal Chem 2016; 409:359-378. [PMID: 27888305 PMCID: PMC5203856 DOI: 10.1007/s00216-016-0073-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022]
Abstract
Reversed-phase chromatography is a method that is often used for glycan separation. For this, glycans are often derivatized with a hydrophobic tag to achieve retention on hydrophobic stationary phases. The separation and elution order of glycans in reversed-phase chromatography is highly dependent on the hydrophobicity of the tag and the contribution of the glycan itself to the retention. The contribution of the different monosaccharides to the retention strongly depends on the position and linkage, and isomer separation may be achieved. The influence of sialic acids and fucoses on the retention of glycans is still incompletely understood and deserves further study. Analysis of complex samples may come with incomplete separation of glycan species, thereby complicating reversed-phase chromatography with fluorescence or UV detection, whereas coupling with mass spectrometry detection allows the resolution of complex mixtures. Depending on the column properties, eluents, and run time, separation of isomeric and isobaric structures can be accomplished with reversed-phase chromatography. Alternatively, porous graphitized carbon chromatography and hydrophilic interaction liquid chromatography are also able to separate isomeric and isobaric structures, generally without the necessity of glycan labeling. Hydrophilic interaction liquid chromatography, porous graphitized carbon chromatography, and reversed-phase chromatography all serve different research purposes and thus can be used for different research questions. A great advantage of reversed-phase chromatography is its broad distribution as it is used in virtually every bioanalytical research laboratory, making it an attracting platform for glycan analysis. Glycan isomer separation by reversed phase liquid chromatography ![]()
Collapse
|
9
|
Huang Y, Dodds ED. Ion-neutral collisional cross sections of carbohydrate isomers as divalent cation adducts and their electron transfer products. Analyst 2016. [PMID: 26225371 DOI: 10.1039/c5an01093d] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As the gravity of glycoscience continues to amass, a commensurate demand for rapid, sensitive, and structurally comprehensive glycoanalytical tools has arisen. Among the most elusive but desirable analytical capabilities is the ability to expeditiously and unambiguously detect, distinguish, and resolve carbohydrates that differ only in their constitutional isomerism and/or stereoisomerism. While ion mobility spectrometry (IMS) has proven a highly promising tool for such analyses, the facility of this method to discriminate larger oligosaccharides is still somewhat limited. In an effort to expand the capabilities of IMS to discriminate among carbohydrate isomers, the present investigation was focused on IMS studies of four trisaccharide isomers, four pentasaccharide isomers, and two hexasaccharide isomers, each as group II metal ion adducts and their corresponding gas-phase electron transfer (ET) products. These studies were also evaluated in the context of previously investigated group I metal ion adducts of the same saccharides. The orientationally averaged ion-neutral collisional cross sections (CCSs) of the various carbohydrate/metal ion adducts were found to be dependent on the structures of specific carbohydrate isomers, sensitive to the electronic characteristics of the bound cation, and responsive to the attachment of an additional electron (in the case of divalent metal ion adducts). Overall, these results underscore the utility of metal ions for probing carbohydrate structure in concert with IMS, and the capacity of gas-phase ion chemistry to expand the menu of such probes.
Collapse
Affiliation(s)
- Yuting Huang
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588-0304, USA.
| | | |
Collapse
|
10
|
Abstract
In proteomics, nano-LC is arguably the most common tool for separating peptides/proteins prior to MS. The main advantage of nano-LC is enhanced sensitivity, as compounds enter the MS in more concentrated bands. This is particularly relevant for determining low abundant compounds in limited samples. Nano-LC columns can produce peak capacities of 1000 or more, and very narrow columns can be used to perform proteomics of 1000 cells or less. Also, nano-LC can be coupled with online add-ons such as selective trap columns or enzymatic reactors, for faster and more automated analysis. Nano-LC is today an established tool for research laboratories; but can nano-LC-based systems soon be ready for more routine settings, such as in clinics?
Collapse
|
11
|
Integration of microfluidic LC with HRMS for the analysis of analytes in biofluids: past, present and future. Bioanalysis 2015; 7:1397-411. [DOI: 10.4155/bio.15.68] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Capillary LC (cLC) coupled to MS has the potential to improve detection limits, address limited sample volumes and allow multiple analyses from one sample. This is particularly attractive in areas where ultrahigh assay sensitivity, low limits of detection and small sample volumes are becoming commonplace. However, implementation of cLC–MS in the bioanalytical–drug metabolism area had been hampered by the lack of commercial instrumentation and the need for experts to operate the system. Recent advances in microfabricated devices such as chip-cube and ion-key technologies offer the potential for true implementation of cLC in the modern laboratory including the benefits of the combination of this type of separation with high-resolution MS.
Collapse
|
12
|
Zhang Q, Feng X, Li H, Liu BF, Lin Y, Liu X. Methylamidation for isomeric profiling of sialylated glycans by nanoLC-MS. Anal Chem 2014; 86:7913-9. [PMID: 25022802 DOI: 10.1021/ac501844b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The analysis of isomeric glycans is a challenging task. In this work, a new strategy was developed for isomer-specific glycan profiling using nanoLC-MS with PGC as the stationary phase. Native glycans were derivatized in the presence of methylamine and trispyrrolidinophosphonium hexafluorophosphate and reduced by the ammonia-borane complex. Methylamidation stabilized the retention time and peak width and improved the detection sensitivity of sialylated glycans to 2-80-fold in comparison to previous ESI-MS methods using the positive-ion mode. Up to 19 tetrasialylated glycan species were identified in the derivatized human serum sample, which were difficult to detect in the sample without derivatization. Furthermore, due to high detection sensitivity and chromatographic resolution, more isomeric glycans could be identified from the model glycoprotein Fetuin and the human serum sample. As a result, up to seven isomers were observed for the disialylated biantennary glycan released from Fetuin, and three of them were identified for the first time in this study. Using the developed analytical strategy, a total of 293 glycan species were obtained from the human serum sample, representing an increase of over 100 peaks in comparison to the underivatized sample. The strategy greatly facilitates the profiling of isomeric glycans and the analysis of trace-level samples.
Collapse
Affiliation(s)
- Qiwei Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
13
|
Adamczyk B, Tharmalingam-Jaikaran T, Schomberg M, Szekrényes Á, Kelly RM, Karlsson NG, Guttman A, Rudd PM. Comparison of separation techniques for the elucidation of IgG N-glycans pooled from healthy mammalian species. Carbohydr Res 2014; 389:174-85. [PMID: 24680513 DOI: 10.1016/j.carres.2014.01.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/13/2014] [Accepted: 01/23/2014] [Indexed: 12/25/2022]
Abstract
The IgG N-glycome provides sufficient complexity and information content to serve as an excellent source for biomarker discovery in mammalian health. Since oligosaccharides play a significant role in many biological processes it is very important to understand their structure. The glycosylation is cell type specific as well as highly variable depending on the species producing the IgG. We evaluated the variation of N-linked glycosylation of human, bovine, ovine, equine, canine and feline IgG using three orthogonal glycan separation techniques: hydrophilic interaction liquid chromatography (HILIC)-UPLC, reversed phase (RP)-UPLC and capillary electrophoresis with laser induced fluorescence detection (CE-LIF). The separation of the glycans by these high resolution methods yielded different profiles due to diverse chemistries. However, the % abundance of structures obtained by CE-LIF and HILIC-UPLC were similar, whereas the analysis by RP-UPLC was difficult to compare as the structures were separated by classes of glycans (highly mannosylated, fucosylated, bisected, fucosylated and bisected) resulting in the co-elution of many structures. The IgGs from various species were selected due to the complexity and variation in their N-glycan composition thereby highlighting the complementarity of these separation techniques.
Collapse
Affiliation(s)
- Barbara Adamczyk
- GlycoScience Group, NIBRT-The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland; Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Tharmala Tharmalingam-Jaikaran
- GlycoScience Group, NIBRT-The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Michael Schomberg
- GlycoScience Group, NIBRT-The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Ákos Szekrényes
- Horváth Laboratory for Bioseparation Sciences, Research Center for Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ronan M Kelly
- GlycoScience Group, NIBRT-The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | | | - Andràs Guttman
- Horváth Laboratory for Bioseparation Sciences, Research Center for Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary; MTA-TKI Translational Glycomics Research Group, University of Pannonia, Veszprem, Hungary
| | - Pauline M Rudd
- GlycoScience Group, NIBRT-The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland.
| |
Collapse
|
14
|
Huang Y, Dodds ED. Ion mobility studies of carbohydrates as group I adducts: isomer specific collisional cross section dependence on metal ion radius. Anal Chem 2013; 85:9728-35. [PMID: 24033309 DOI: 10.1021/ac402133f] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Carbohydrates play numerous critical roles in biological systems. Characterization of oligosaccharide structures is essential to a complete understanding of their functions in biological processes; nevertheless, their structural determination remains challenging in part due to isomerism. Ion mobility spectrometry provides the means to resolve gas phase ions on the basis of their shape-to-charge ratios, thus providing significant potential for separation and differentiation of carbohydrate isomers. Here, we report on the determination of collisional cross sections for four groups of isomeric carbohydrates (including five isomeric disaccharides, four isomeric trisaccharides, two isomeric pentasaccharides, and two isomeric hexasaccharides) as their group I metal ion adducts (i.e., [M + Li](+), [M + Na](+), [M + K](+), [M + Rb](+), and [M + Cs](+)). In all, 65 collisional cross sections were measured, the great majority of which have not been previously reported. As anticipated, the collisional cross sections of the carbohydrate metal ion adducts generally increase with increasing metal ion radius; however, the collisional cross sections were found to scale with the group I cation size in isomer specific manners. Such measurements are of substantial analytical value, as they illustrate how the selection of charge carrier influences carbohydrate ion mobility determinations. For example, certain pairs of isomeric carbohydrates assume unique collisional cross sections upon binding one metal ion, but not another. On the whole, these data suggest a role for the charge carrier as a probe of carbohydrate structure and thus have significant implications for the continued development and application of ion mobility spectrometry for the distinction and resolution of isomeric carbohydrates.
Collapse
Affiliation(s)
- Yuting Huang
- Department of Chemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0304, United States
| | | |
Collapse
|
15
|
Tharmalingam T, Adamczyk B, Doherty MA, Royle L, Rudd PM. Strategies for the profiling, characterisation and detailed structural analysis of N-linked oligosaccharides. Glycoconj J 2012; 30:137-46. [PMID: 22922975 DOI: 10.1007/s10719-012-9443-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 08/09/2012] [Accepted: 08/13/2012] [Indexed: 12/25/2022]
Abstract
Many post-translational modifications, including glycosylation, are pivotal for the structural integrity, location and functional activity of glycoproteins. Sub-populations of proteins that are relocated or functionally changed by such modifications can change resting proteins into active ones, mediating specific effector functions, as in the case of monoclonal antibodies. To ensure safe and efficacious drugs it is essential to employ appropriate robust, quantitative analytical strategies that can (i) perform detailed glycan structural analysis, (ii) characterise specific subsets of glycans to assess known critical features of therapeutic activities (iii) rapidly profile glycan pools for at-line monitoring or high level batch to batch screening. Here we focus on these aspects of glycan analysis, showing how state-of-the-art technologies are required at all stages during the production of recombinant glycotherapeutics. These data can provide insights into processing pathways and suggest markers for intervention at critical control points in bioprocessing and also critical decision points in disease and drug monitoring in patients. Importantly, these tools are now enabling the first glycome/genome studies in large populations, allowing the integration of glycomics into other 'omics platforms in a systems biology context.
Collapse
Affiliation(s)
- Tharmala Tharmalingam
- NIBRT Glycobiology Laboratory, NIBRT - The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co Dublin, Ireland
| | | | | | | | | |
Collapse
|
16
|
Siviero A, Bergna M, Famiglini G, Mantegazza A, Palma P, Cappiello A. In-depth performance investigation of a nano-LC gradient generator. Electrophoresis 2012; 33:575-82. [DOI: 10.1002/elps.201100331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
17
|
Farwanah H, Kolter T, Sandhoff K. Mass spectrometric analysis of neutral sphingolipids: Methods, applications, and limitations. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:854-60. [DOI: 10.1016/j.bbalip.2011.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/05/2011] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
|
18
|
Mass Spectrometric Characterization of Oligo- and Polysaccharides and Their Derivatives. MASS SPECTROMETRY OF POLYMERS – NEW TECHNIQUES 2011. [DOI: 10.1007/12_2011_134] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
19
|
Bioanalysis: the best of 2009. Bioanalysis 2010; 2:1345-7. [DOI: 10.4155/bio.10.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|