1
|
Gurjar M, Priyan KA, Asia P, Kumar U, Shukla K, Mishra BK, Kapoor A, Gavel P. Optimizing cancer patient care with a robust assay for 5-fluorouracil quantification and in-vitro stability in human blood for therapeutic drug monitoring. Pract Lab Med 2024; 40:e00415. [PMID: 39132451 PMCID: PMC11315223 DOI: 10.1016/j.plabm.2024.e00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 08/13/2024] Open
Abstract
Background The plasma concentration of 5-Fluorouracil (5-FU) is affected by numerous factors, thereby limiting its efficacy. The current therapeutic regimen's doses based on body surface area (BSA) are linked to increased toxicity and sometimes inadequate drug exposure. Aim and objectives The study aims to develop an in-vitro assay to monitor 5-Fluorouracil's therapeutic efficacy in cancer patients' blood samples, focusing on pharmacokinetics to improve therapy precision. Materials and methods Drug levels were determined from standards, quality controls, and experimental samples using protein precipitation, liquid-liquid extraction, and separation using a C18 analytical column with an isocratic program. Result In EXP-1A, the mean concentration of 5-Fluorouracil was 1.15 μg/ml; in EXP-1B, it was 1.16 μg/ml, while in EXP-1C, the mean concentration was 0.9 μg/ml. The percentage difference in mean 5-Fluorouracil concentration between the experiment sample containing a DPD inactivator and EXP-1C (without a DPD inactivator) was 21.5 % higher for EXP-1A and 0.68 % higher for EXP-1B. In the second phase of the experiment, the overall stability of 5-Fluorouracil in samples containing a DPD inactivator was 24.5 % superior compared to samples without a DPD inactivator. Conclusion A modified extraction technique has been developed to accurately measure 5-Flourouracil concentration in blood, preserving its stability and concentration by adding a DPD inactivator.
Collapse
Affiliation(s)
- Murari Gurjar
- Department of Clinical Pharmacology, Homi Bhabha Cancer Hospital & Mahamana Pandit Madan Mohan Malaviya Cancer Centre, Tata Memorial Centre, Varanasi-221005, India
- Department of Biochemistry, Homi Bhabha Cancer Hospital & Mahamana Pandit Madan Mohan Malaviya Cancer Centre, Tata Memorial Centre, Varanasi-221005, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - K. Ambedkar Priyan
- Department of Biochemistry, Christian Medical College, Vellore-6326002, Tamil Nadu, India
| | - Priyanka Asia
- Department of Biochemistry, Homi Bhabha Cancer Hospital & Mahamana Pandit Madan Mohan Malaviya Cancer Centre, Tata Memorial Centre, Varanasi-221005, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Uday Kumar
- Department of Biochemistry, Homi Bhabha Cancer Hospital & Mahamana Pandit Madan Mohan Malaviya Cancer Centre, Tata Memorial Centre, Varanasi-221005, India
| | - Kajal Shukla
- Department of Clinical Pharmacology, Homi Bhabha Cancer Hospital & Mahamana Pandit Madan Mohan Malaviya Cancer Centre, Tata Memorial Centre, Varanasi-221005, India
| | - Bal Krishna Mishra
- Department of Medical Oncology, Homi Bhabha Cancer Hospital & Mahamana Pandit Madan Mohan Malaviya Cancer Centre, Tata Memorial Centre, Varanasi-221005, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Akhil Kapoor
- Department of Medical Oncology, Homi Bhabha Cancer Hospital & Mahamana Pandit Madan Mohan Malaviya Cancer Centre, Tata Memorial Centre, Varanasi-221005, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Pratibha Gavel
- Department of Biochemistry, Homi Bhabha Cancer Hospital & Mahamana Pandit Madan Mohan Malaviya Cancer Centre, Tata Memorial Centre, Varanasi-221005, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
2
|
Electrochemiluminescence resonance energy transfer system based on ox-MWCNTs-IGQDs and PdAg nanosheets for the detection of 5-fluorouracil in serum. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Ahmad N, Albassam AA, Faiyaz Khan M, Ullah Z, Mohammed Buheazah T, Salman AlHomoud H, Ali Al-Nasif H. A novel 5-Fluorocuracil multiple-nanoemulsion used for the enhancement of oral bioavailability in the treatment of colorectal cancer. Saudi J Biol Sci 2022; 29:3704-3716. [PMID: 35844373 PMCID: PMC9280251 DOI: 10.1016/j.sjbs.2022.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 02/13/2022] [Indexed: 11/18/2022] Open
Abstract
5-Fluorouracil (5-FU) is a drug of choice for colorectal-cancer. But oral therapeutic efficacy of 5-FU is restricted due to their very little bioavailability because of poor membrane permeability and GIT-absorption. We have developed a multiple nanoemulsion (w/o/w i.e. 5-FU-MNE) in which 5-FU incorporated to improve their oral-absorption. Globule-size of opt-5-FU-MNE was 51.64 ± 2.61 nm with PDI and ZP 0.101 ± 0.001 and −5.59 ± 0.94, respectively. In vitro 5-FU-release and ex vivo permeation studies exhibited 99.71% release and 83.64% of 5-FU from opt-nanoformulation. Cytotoxic in vitro studies-exhibited that 5-FU in opt-5-FU-MNE was 5-times more potent than 5-FU-S on human-colon-cancer-cell-lines (HT-29). The enhanced Cmax with AUC0-8h with opt-5-FU-MNE was shown extremely significant (p < 0.001) in wistar rat’s plasma in the comparison of oral and i.v. treated group of 5-FU-S by PK-observations. Furthermore, opt-5-FU-MNE was showed much more significant (p < 0.001) results as compared to 5-FU-S (free) on cell lines for human colon cancer (HT-29).
Collapse
|
4
|
Sabourian R, Mirjalili SZ, Namini N, Chavoshy F, Hajimahmoodi M, Safavi M. HPLC methods for quantifying anticancer drugs in human samples: A systematic review. Anal Biochem 2020; 610:113891. [PMID: 32763305 DOI: 10.1016/j.ab.2020.113891] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/09/2020] [Accepted: 07/24/2020] [Indexed: 01/11/2023]
Abstract
Pharmacokinetic (PK) study of anticancer drugs in cancer patients is highly crucial for dose selection and dosing intervals in clinical applications. Once an anticancer drug is administered, it undergoes various metabolic pathways; to determine these pathways, it is necessary to follow the administered drug in biological samples via different analytical methods. In addition, multi-drug quantification methods in patients undergoing multi-drug regimens of cancer therapy can have several benefits, such as reduced sampling time and analysis costs. In order to collect and categorize these studies, we conducted a systematic review of HPLC methods reported for the analysis of anticancer drugs in biological samples. A systematic search was performed on PubMed Medline, Scopus, and Web of Science databases, and 116 studies were included. In summary of included studies, when the objective of a method was to quantify a single drug, MS, or UV detectors were utilized equivalently. On the other hand, in methods with the aim of quantifying drug and metabolite(s) in a single run, MS detectors were the most utilized. This review can provide a comprehensive insight for researchers prior to developing a quantification method and selecting a detector.
Collapse
Affiliation(s)
- Reyhaneh Sabourian
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyedeh Zohreh Mirjalili
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Negar Namini
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Chavoshy
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mannan Hajimahmoodi
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| |
Collapse
|
5
|
Altieri P, Murialdo R, Barisione C, Lazzarini E, Garibaldi S, Fabbi P, Ruggeri C, Borile S, Carbone F, Armirotti A, Canepa M, Ballestrero A, Brunelli C, Montecucco F, Ameri P, Spallarossa P. 5-fluorouracil causes endothelial cell senescence: potential protective role of glucagon-like peptide 1. Br J Pharmacol 2017; 174:3713-3726. [PMID: 28127745 PMCID: PMC5647192 DOI: 10.1111/bph.13725] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/09/2017] [Accepted: 01/19/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE 5-fluorouracil (5FU) and its prodrug, capecitabine, can damage endothelial cells, whilst endothelial integrity is preserved by glucagon-like peptide 1 (GLP-1). Here, we studied the effect of 5FU on endothelial senescence and whether GLP-1 antagonizes it. EXPERIMENTAL APPROACH EA.hy926 cells were exposed to 5FU or sera from patients taking capecitabine, with or without pre-incubation with GLP-1. Senescence was identified by expression of senescence-associated β-galactosidase and p16INK4a and reduced cell proliferation. Soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble intercellular adhesion molecule-1 (sICAM-1) and CD146 (marker of endothelial injury) were measured by ELISA before and at completion of capecitabine chemotherapy. RT-PCR, western blotting, functional experiments with signalling inhibitors and ERK1/2 silencing were performed to characterize 5FU-induced phenotype and elucidate the pathways underlying 5FU and GLP-1 activity. KEY RESULTS Both 5FU and sera from capecitabine-treated patients stimulated endothelial cell senescence. 5FU-elicited senescence occurred via activation of p38 and JNK, and was associated with decreased eNOS and SIRT-1 levels. Furthermore, 5FU up-regulated VCAM1 and TYMP (encodes enzyme activating capecitabine and 5FU), and sVCAM-1 and CD146 concentrations were higher after than before capecitabine chemotherapy. A non-significant trend for higher ICAM1 levels was also observed. GLP-1 counteracted 5FU-initiated senescence and reduced eNOS and SIRT-1 expression, this protection being mediated by GLP-1 receptor, ERK1/2 and, possibly, PKA and PI3K. CONCLUSIONS AND IMPLICATIONS 5FU causes endothelial cell senescence and dysfunction, which may contribute to its cardiovascular side effects. 5FU-triggered senescence was prevented by GLP-1, raising the possibility of using GLP-1 analogues and degradation inhibitors to treat 5FU and capecitabine vascular toxicity. LINKED ARTICLES This article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.21/issuetoc.
Collapse
Affiliation(s)
- Paola Altieri
- Laboratory of Cardiovascular Biology, Department of Internal MedicineUniversity of GenovaGenovaItaly
| | | | - Chiara Barisione
- Laboratory of Cardiovascular Biology, Department of Internal MedicineUniversity of GenovaGenovaItaly
| | - Edoardo Lazzarini
- Laboratory of Cardiovascular Biology, Department of Internal MedicineUniversity of GenovaGenovaItaly
| | - Silvano Garibaldi
- Laboratory of Cardiovascular Biology, Department of Internal MedicineUniversity of GenovaGenovaItaly
| | - Patrizia Fabbi
- Laboratory of Cardiovascular Biology, Department of Internal MedicineUniversity of GenovaGenovaItaly
| | - Clarissa Ruggeri
- Laboratory of Cardiovascular Biology, Department of Internal MedicineUniversity of GenovaGenovaItaly
| | - Silvia Borile
- Cardiovascular Disease UnitIRCCS AOU San Martino‐ISTGenovaItaly
| | - Federico Carbone
- First Clinic of Internal MedicineIRCCS AOU San Martino ‐ ISTGenovaItaly
- Department of Internal MedicineUniversity of GenovaGenovaItaly
| | - Andrea Armirotti
- Drug Discovery and Development DepartmentItalian Institute of Technology (IIT)GenovaItaly
| | - Marco Canepa
- Laboratory of Cardiovascular Biology, Department of Internal MedicineUniversity of GenovaGenovaItaly
- Cardiovascular Disease UnitIRCCS AOU San Martino‐ISTGenovaItaly
| | | | - Claudio Brunelli
- Laboratory of Cardiovascular Biology, Department of Internal MedicineUniversity of GenovaGenovaItaly
- Cardiovascular Disease UnitIRCCS AOU San Martino‐ISTGenovaItaly
| | - Fabrizio Montecucco
- First Clinic of Internal MedicineIRCCS AOU San Martino ‐ ISTGenovaItaly
- Department of Internal MedicineUniversity of GenovaGenovaItaly
- Centre of Excellence for Biomedical Research (CEBR)University of GenovaGenovaItaly
| | - Pietro Ameri
- Laboratory of Cardiovascular Biology, Department of Internal MedicineUniversity of GenovaGenovaItaly
- Cardiovascular Disease UnitIRCCS AOU San Martino‐ISTGenovaItaly
| | - Paolo Spallarossa
- Laboratory of Cardiovascular Biology, Department of Internal MedicineUniversity of GenovaGenovaItaly
- Cardiovascular Disease UnitIRCCS AOU San Martino‐ISTGenovaItaly
| |
Collapse
|
6
|
Di Martino A, Pavelkova A, Maciulyte S, Budriene S, Sedlarik V. Polysaccharide-based nanocomplexes for co-encapsulation and controlled release of 5-Fluorouracil and Temozolomide. Eur J Pharm Sci 2016; 92:276-86. [DOI: 10.1016/j.ejps.2016.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/09/2016] [Accepted: 05/02/2016] [Indexed: 12/17/2022]
|
7
|
Pandey K, Dubey RS, Prasad BB. A Critical Review on Clinical Application of Separation Techniques for Selective Recognition of Uracil and 5-Fluorouracil. Indian J Clin Biochem 2015; 31:3-12. [PMID: 26855482 DOI: 10.1007/s12291-015-0482-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/05/2015] [Indexed: 11/30/2022]
Abstract
The most important objectives that are frequently found in bio-analytical chemistry involve applying tools to relevant medical/biological problems and refining these applications. Developing a reliable sample preparation step, for the medical and biological fields is another primary objective in analytical chemistry, in order to extract and isolate the analytes of interest from complex biological matrices. Since, main inborn errors of metabolism (IEM) diagnosable through uracil analysis and the therapeutic monitoring of toxic 5-fluoruracil (an important anti-cancerous drug) in dihydropyrimidine dehydrogenase deficient patients, require an ultra-sensitive, reproducible, selective, and accurate analytical techniques for their measurements. Therefore, keeping in view, the diagnostic value of uracil and 5-fluoruracil measurements, this article refines several analytical techniques involved in selective recognition and quantification of uracil and 5-fluoruracil from biological and pharmaceutical samples. The prospective study revealed that implementation of molecularly imprinted polymer as a solid-phase material for sample preparation and preconcentration of uracil and 5-fluoruracil had proven to be effective as it could obviates problems related to tedious separation techniques, owing to protein binding and drastic interferences, from the complex matrices in real samples such as blood plasma, serum samples.
Collapse
Affiliation(s)
- Khushaboo Pandey
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh India
| | | | - Bhim Bali Prasad
- Analytical Division, Chemistry Department, Faculty of Science, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh India
| |
Collapse
|
8
|
Büchel B, Sistonen J, Joerger M, Aebi Y, Schürch S, Largiadèr CR. Comparative evaluation of the My5-FU™ immunoassay and LC-MS/MS in monitoring the 5-fluorouracil plasma levels in cancer patients. Clin Chem Lab Med 2014; 51:1681-8. [PMID: 23412878 DOI: 10.1515/cclm-2012-0641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/21/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND Chemotherapies of solid tumors commonly include 5-fluorouracil (5-FU). With standard doses of 5-FU, substantial inter-patient variability has been observed in exposure levels and treatment response. Recently, improved outcomes in colorectal cancer patients due to pharmacokinetically guided 5-FU dosing were reported. We aimed at establishing a rapid and sensitive method for monitoring 5-FU plasma levels in cancer patients in our routine clinical practice. METHODS Performance of the Saladax My5-FU™ immunoassay was evaluated on the Roche Cobas® Integra 800 analyzer. Subsequently, 5-FU concentrations of 247 clinical plasma samples obtained with this assay were compared to the results obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and other commonly used clinical analyzers (Olympus AU400, Roche Cobas c6000, and Thermo Fisher CDx90). RESULTS The My-FU assay was successfully validated on the Cobas Integra 800 analyzer in terms of linearity, precision, accuracy, recovery, interference, sample carryover, and dilution integrity. Method comparison between the Cobas Integra 800 and LC-MS/MS revealed a proportional bias of 7% towards higher values measured with the My5-FU assay. However, when the Cobas Integra 800 was compared to three other clinical analyzers in addition to LC-MS/MS including 50 samples representing the typical clinical range of 5-FU plasma concentrations, only a small proportional bias (≤1.6%) and a constant bias below the limit of detection was observed. CONCLUSIONS The My5-FU assay demonstrated robust and highly comparable performance on different analyzers. Therefore, the assay is suitable for monitoring 5-FU plasma levels in routine clinical practice and may contribute to improved efficacy and safety of commonly used 5-FU-based chemotherapies.
Collapse
Affiliation(s)
- Barbara Büchel
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
9
|
Tsume Y, Provoda CJ, Amidon GL. The achievement of mass balance by simultaneous quantification of floxuridine prodrug, floxuridine, 5-fluorouracil, 5-dihydrouracil, α-fluoro-β-ureidopropionate, α-fluoro-β-alanine using LC-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:915-20. [PMID: 21450537 DOI: 10.1016/j.jchromb.2011.02.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 02/22/2011] [Accepted: 02/27/2011] [Indexed: 12/21/2022]
Abstract
5-Fluoro-2'-deoxyuridine (floxuridine, 5-FdUrd) and 5-fluorouracil (5-FU) are widely used for the treatment of colorectal cancers. The mechanisms of action of 5-FdUrd and 5-FU, as well as the biochemical pathway responsible for their metabolism, are well understood. Identification of every metabolite and achieving mass balance by conventional UV absorption-based HPLC analysis are not feasible because the metabolites beyond 5-FU in the 5-FdUrd metabolic pathway are undetectable by UV light. We therefore established a mass spectrometry method, designed for fast and convenient analysis, for simultaneously measuring 5-FdUrd, 5-FU, and their metabolites. Linearity, precision and accuracy were validated in the concentration ranges studied for each compound. Hydrolysis studies of 5-FdUrd and amino acid mono ester prodrugs of 5-FdUrd in Capan-2 cell homogenates were carried out and the achievement of mass balance was established with this method (recovery of 5'-O-l-leucyl-FdUrd was 96.6-108.2% and that of 5-FdUrd was 79.4-117.4%). This simple LC-MS method achieves reliable quantitation and mass balance of 5-FdUrd, 5-FU, and their metabolites and can be effectively utilized for further kinetic studies.
Collapse
Affiliation(s)
- Yasuhiro Tsume
- Department of Pharmaceutical Science, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | | | | |
Collapse
|