1
|
Penman SL, Roeder NM, Berthold EC, Senetra AS, Marion M, Richardson BJ, White O, Fearby NL, McCurdy CR, Hamilton J, Sharma A, Thanos PK. FABP5 is important for cognitive function and is an important regulator of the physiological effects and pharmacokinetics of acute Δ9 tetrahydrocannabinol inhalation in mice. Pharmacol Biochem Behav 2023; 231:173633. [PMID: 37716413 DOI: 10.1016/j.pbb.2023.173633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Fatty acid binding protein 5 (FABP5) interacts with the endocannabinoid system in the brain via intracellular transport of anandamide, as well as Δ9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis. Previous work has established the behavioral effects of genetic deletion of FABP5, but not in the presence of THC. The present study sought to further elucidate the role of FABP5 on the pharmacokinetic and behavioral response to THC through global deletion. Adult FABP5+/+ and FABP5-/- mice were tested for behavioral response to THC using Open Field (OF), Novel Object Recognition (NOR), T-Maze, Morris Water Maze (MWM), and Elevated Plus Maze (EPM). An additional cohort of mice was used to harvest blood, brains, and liver samples to measure THC and metabolites after acute administration of THC. Behavioral tests showed that some cognitive deficits from FABP5 deletion, particularly in MWM, were blocked by THC administration, while this was not observed in other measures of memory and anxiety (such as T-Maze and EPM). Measurement of THC and metabolites in blood serum and brain tissue through UPLC-MS/MS analysis showed that the pharmacokinetics of THC was altered by FABP5. The present study shows further evidence of the importance of FABP5 in cognitive function. Additionally, results showed that FABP5 is an important regulator of the physiological effects and pharmacokinetics of THC.
Collapse
Affiliation(s)
- Samantha L Penman
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Nicole M Roeder
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Erin C Berthold
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Alexandria S Senetra
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Matthew Marion
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Brittany J Richardson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Olivia White
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Nathan L Fearby
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Christopher R McCurdy
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA; Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
2
|
Prentice RN, Younus M, Krittaphol-Bailey W, Rizwan SB. A sensitive LC-MS/MS method for the study of exogenously administered 13 C-oleoylethanolamide in rat plasma and brain tissue. J Sep Sci 2021; 44:2693-2704. [PMID: 33939878 DOI: 10.1002/jssc.202001210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 01/10/2023]
Abstract
Oleoylethanolamide is an endogenous molecule with neuroprotective effects. It has been reported that exogenous oleoylethanolamide can be administered therapeutically, but the confounding presence of the endogenous molecule has led to conflicting reports regarding the mechanisms of the effects and highlights a need for an adequate methodology to differentiate them. We have developed a liquid chromatography-tandem mass spectrometry method to study oleoylethanolamide in rat plasma and brain using a 13 C-labeled isotope, 13 C-oleoylethanolamide. 13 C-oleoylethanolamide was extracted using a liquid-liquid extraction employing acetonitrile and tert-butyl methyl ether (1:4). Analysis was performed using a gradient with a total run time of 12 min. 13 C-oleoylethanolamide, d4 -oleoylethanolamide (internal standard), and 12 C-oleoylethanolamide (endogenous background) eluted simultaneously at 1.64 min. The method was validated for specificity, sensitivity, accuracy, and precision and found to be capable of quantification within acceptable limits of ±15% over the calibration range of 0.39-25 ng/mL for the plasma and 1.17-75 ng/g for the brain. It was then applied to quantify 13 C-oleoylethanolamide over 90 min after intravenous administration of a solution (1 mg/kg) in rats. Results suggest that 13 C-oleoylethanolamide does not reach therapeutic concentrations in the brain, despite a relatively prolonged plasma circulation, suggesting that rapid degradation in the brain remains an obstacle to its clinical application to neurological disease.
Collapse
Affiliation(s)
| | - Mohammad Younus
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
3
|
Guan Y, Deng Q, Li G, Si L, Long L, Soleimani Damaneh M, Huang J. Development, validation and comparison of three LC-MS/MS methods for determination of endogenous striatal oleoyl ethanolamine in mice. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1142:122041. [DOI: 10.1016/j.jchromb.2020.122041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/16/2020] [Accepted: 02/24/2020] [Indexed: 01/31/2023]
|
4
|
Beggiato S, Tomasini MC, Cassano T, Ferraro L. Chronic Oral Palmitoylethanolamide Administration Rescues Cognitive Deficit and Reduces Neuroinflammation, Oxidative Stress, and Glutamate Levels in A Transgenic Murine Model of Alzheimer's Disease. J Clin Med 2020; 9:jcm9020428. [PMID: 32033363 PMCID: PMC7074257 DOI: 10.3390/jcm9020428] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 01/15/2023] Open
Abstract
N-palmitoylethanolamide (PEA) is a lipid mediator belonging to the class of the N-acylethanolamine. Products containing PEA, also in ultramicronized formulation (um-PEA), are already licensed for use in humans for its analgesic and anti-inflammatory properties, and demonstrated high safety and tolerability. Preclinical studies indicate that PEA, especially in the ultramicronized form, could be a potential therapeutic agent for Alzheimer's disease (AD). In this study, we evaluated the neuroprotective and antioxidant effects of chronic (three months) um-PEA administration in an animal model of AD (3×Tg-AD mice). For translation purposes, the compound has been orally administered. Cognitive performance as well as biochemical markers [(interleukin-16 (IL-16) and tumor necrosis factor- (TNF-)] levels, reactive oxygen species (ROS) production, synaptophysin and glutamate levels) have been evaluated at the end of um-PEA treatment. The results indicate that orally administered um-PEA was adsorbed and distributed in the mice brain. The chronic treatment with um-PEA (100 mg/kg/day for three months) rescued cognitive deficit, restrained neuroinflammation and oxidative stress, and reduced the increase in hippocampal glutamate levels observed in 3×Tg-AD mice. Overall, these data reinforce the concept that um-PEA exerts beneficial effects in 3×Tg-AD mice. The fact that PEA is already licensed for the use in humans strongly supports its rapid translation in clinical practice.
Collapse
Affiliation(s)
- Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (M.C.T.)
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
- IRET Foundation, Ozzano Emilia, 40064 Bologna, Italy
| | - Maria Cristina Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (M.C.T.)
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (M.C.T.)
- IRET Foundation, Ozzano Emilia, 40064 Bologna, Italy
- Technopole of Ferrara, LTTA Laboratory for the Technologies for Advanced Therapies, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-455276
| |
Collapse
|
5
|
Gurke R, Thomas D, Schreiber Y, Schäfer SMG, Fleck SC, Geisslinger G, Ferreirós N. Determination of endocannabinoids and endocannabinoid-like substances in human K3EDTA plasma - LC-MS/MS method validation and pre-analytical characteristics. Talanta 2019; 204:386-394. [PMID: 31357310 DOI: 10.1016/j.talanta.2019.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 12/18/2022]
Abstract
The determination of endocannabinoids and endocannabinoid-like substances in biological human samples is a vibrant field of research with great significance due to postulated relevance of these substances in diseases such as Alzheimer's disease, multiple sclerosis, cancer and cardiovascular diseases. For a possible use as biomarker in early prediction or diagnosis of a disease as well as examination of a successful treatment, the valid determination of the analytes in common accessible human samples, such as plasma or serum, is of great importance. A method for the determination of arachidonoyl ethanolamide, oleoyl ethanolamide, palmitoyl ethanolamide, 1-arachidonoyl glycerol and 2-arachidonoyl glycerol in human K3EDTA plasma using liquid-liquid-extraction in combination with liquid chromatography-tandem-mass spectrometry has been developed and validated for the quantification of the aforementioned analytes. Particular emphasis was placed on the chromatographic separation of the isomers 1-arachidonoyl glycerol and 2-arachidonoyl glycerol, arachidonoyl ethanolamide and O-arachidonoyl ethanolamine (virodhamine) as well as oleoyl ethanolamide and vaccenic acid ethanolamide. During the validation process, increasing concentrations of 1-arachidonoyl glycerol and 2-arachidonoyl glycerol while storing plasma samples were observed. In-depth investigation of pre-analytical sample handling revealed rising concentrations for both analytes in plasma and for arachidonoyl ethanolamide, oleoyl ethanolamide and palmitoyl ethanolamide in whole blood, dependent on the period and temperature of storage. Prevention of the increase in concentration was not possible, raising the question whether human K3EDTA plasma is suitable for the determination of endocannabinoids and endocannabinoid-like substances. Especially the common practice to calculate the concentration of 2-arachidonoyl glycerol as sum of 1-arachidonoyl glycerol and 2-arachidonoyl glycerol is highly questionable because the concentrations of both analytes increase unequally while storing the plasma samples in the fridge.
Collapse
Affiliation(s)
- R Gurke
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
| | - D Thomas
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Y Schreiber
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596, Frankfurt Am Main, Germany
| | - S M G Schäfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596, Frankfurt Am Main, Germany
| | - S C Fleck
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596, Frankfurt Am Main, Germany
| | - G Geisslinger
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596, Frankfurt Am Main, Germany
| | - N Ferreirós
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| |
Collapse
|
6
|
Petrosino S, Cordaro M, Verde R, Schiano Moriello A, Marcolongo G, Schievano C, Siracusa R, Piscitelli F, Peritore AF, Crupi R, Impellizzeri D, Esposito E, Cuzzocrea S, Di Marzo V. Oral Ultramicronized Palmitoylethanolamide: Plasma and Tissue Levels and Spinal Anti-hyperalgesic Effect. Front Pharmacol 2018; 9:249. [PMID: 29615912 PMCID: PMC5870042 DOI: 10.3389/fphar.2018.00249] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022] Open
Abstract
Palmitoylethanolamide (PEA) is a pleiotropic lipid mediator with established anti-inflammatory and anti-hyperalgesic activity. Ultramicronized PEA (PEA-um) has superior oral efficacy compared to naïve (non-micronized) PEA. The aim of the present study was two-fold: (1) to evaluate whether oral PEA-um has greater absorbability compared to naïve PEA, and its ability to reach peripheral and central tissues under healthy and local inflammatory conditions (carrageenan paw edema); (2) to better characterize the molecular pathways involved in PEA-um action, particularly at the spinal level. Rats were dosed with 30 mg/kg of [13C]4-PEA-um or naïve [13C]4-PEA by oral gavage, and [13C]4-PEA levels quantified, as a function of time, by liquid chromatography/atmospheric pressure chemical ionization/mass spectrometry. Overall plasma levels were higher in both healthy and carrageenan-injected rats administered [13C]4-PEA-um as compared to those receiving naïve [13C]4-PEA, indicating the greater absorbability of PEA-um. Furthermore, carrageenan injection markedly favored an increase in levels of [13C]4-PEA in plasma, paw and spinal cord. Oral treatment of carrageenan-injected rats with PEA-um (10 mg/kg) confirmed beneficial peripheral effects on paw inflammation, thermal hyperalgesia and tissue damage. Notably, PEA-um down-regulated distinct spinal inflammatory and oxidative pathways. These last findings instruct on spinal mechanisms involved in the anti-hyperalgesic effect of PEA-um in inflammatory pain.
Collapse
Affiliation(s)
- Stefania Petrosino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
- Epitech Group SpA, Padova, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
- Epitech Group SpA, Padova, Italy
| | | | | | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| | - Alessio F. Peritore
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science University of Messina, Messina, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Napoli, Italy
| |
Collapse
|
7
|
Surrogate matrix: opportunities and challenges for tissue sample analysis. Bioanalysis 2015; 7:2419-2433. [DOI: 10.4155/bio.15.161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Often there is limited availability of matching tissue matrix and/or the analyte may occur endogenously in the target tissue. Surrogate matrix provides an option for quantitation of drug, metabolite(s) and biomarker(s) in these circumstances. However, the use of a surrogate matrix also presents challenges. This paper summarizes and discusses the challenges of selecting a proper surrogate, validating the suitability of the surrogate and establishing a surrogate tissue method using the fit-for-purpose approach. This paper also systematically reviews the current practices for evaluating key parameters of a surrogate tissue assay, including sensitivity, specificity, selectivity, interference, precision, accuracy, recovery, matrix effects and stability. Considerations and suggestions are provided for dealing with such challenges during method establishment and tissue sample analysis.
Collapse
|
8
|
Gong Y, Li X, Kang L, Xie Y, Rong Z, Wang H, Qi H, Chen H. Simultaneous determination of endocannabinoids in murine plasma and brain substructures by surrogate-based LC–MS/MS: Application in tumor-bearing mice. J Pharm Biomed Anal 2015; 111:57-63. [DOI: 10.1016/j.jpba.2015.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 12/13/2022]
|