1
|
Sousa DVM, Pereira FV, Boratto VHM, Orlando RM. Multiphase electroextraction as a simple and fast sample preparation alternative for the digital image determination of doxorubicin in saliva. Talanta 2023; 255:124242. [PMID: 36638654 DOI: 10.1016/j.talanta.2022.124242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Monitoring chemotherapeutic drugs in biological fluids is, in many cases, extremely important for dose adjustment, the maintenance of therapies, and the control of side effects. In this work, a method for determining the doxorubicin in saliva by digital image analysis (DIA) was optimised and validated. Images from a paper point were obtained using a conventional and cheap flatbed scanner at a 600 ppp resolution. The RGB data channels were obtained from the images in a region of 15 × 15 pixels around the sorbent vertex. The paper point was used as sorbent material in sample preparation using a multiphase electroextraction system. Following optimisation using a Doehlert experimental design, the method was able to simultaneously extract 66 samples in 20 min. The high selectivity of the electric field associated with the sorption capacity of the cellulosic material allowed the chemotherapy drug to be pre-concentrated and quantified in a range between 50 and 500 μg L-1 (R2 > 0.98). The method also exhibited adequate parameters (limits of detection and quantification, recovery, and precision) indicating its potential application in the monitoring of doxorubicin and similar drugs in saliva.
Collapse
|
2
|
Martins RO, de Araújo GL, Simas RC, Chaves AR. ELECTROMEMBRANE EXTRACTION (EME): FUNDAMENTALS AND APPLICATIONS. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
3
|
On-chip electromembrane extraction of some polar acidic drugs in plasma samples by the development of an active and efficient polymeric support of liquid membrane based on electrospinning process. Anal Chim Acta 2022; 1238:340628. [DOI: 10.1016/j.aca.2022.340628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
|
4
|
Shang Q, Mei H, Huang C, Shen X. Fundamentals, operations and applications of electromembrane extraction: An overview of reviews. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Mousa A, Basheer C, Abdullah M, Al-Rimawi F. Biosynthesized silver nanoparticle-coated electro-membrane extraction of perchlorate in different seafood samples. Biomed Chromatogr 2021; 35:e5196. [PMID: 34115393 DOI: 10.1002/bmc.5196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/22/2021] [Accepted: 06/08/2021] [Indexed: 11/12/2022]
Abstract
In this work we developed a rapid and straightforward technique in which biosynthesized silver nanoparticles (Ag-NPs) were coated on a porous membrane utilizing electrical potential to extract perchlorate from seafood samples. The biosynthesized Ag-NPs were well characterized using UV-Vis. spectrophotometry, X-ray diffraction, and scanning electron microscopy. After extraction, analyses were performed using ion chromatography. The Ag-NP-coated porous polypropylene membrane shows higher extraction efficiency due to the high electrical conductivity of the Ag-NPs. The performance of this efficient technique was compared with those previously reported in the literature. The extraction variables that affect extraction of the target analyte and influence percentage recovery, such as pH of the sample solution, extraction time, and applied voltage, were investigated and optimized. The results demonstrated optimum conditions to achieve low detection limits [LODs (limits of detection)]: sample solution (pH = 6), short extraction time (10 min), and applied voltage (5 V). The developed method shows excellent linearity for perchlorate ion in the range from 0.001 to 350 μg L-1 with a coefficient of determination (r2 ) of 0.9991. The detection limit (LODs) and quantification limits (limits of quantification) were found to be 0.04 and 0.1225 μg kg-1 , respectively. The mean recovery percentages for three replicates of 10 different spiked fish samples by 3 μg g-1 of perchlorate were between 92.2 and 106.2%, with an observed relative standard deviation in the range of 0.8-3.7%. The proposed method is rapid, sensitive, inexpensive, environmentally friendly, and highly effective in extracting perchlorate from different seafood samples.
Collapse
Affiliation(s)
- Amayreh Mousa
- Department of Chemistry, College of Science, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Chanbasha Basheer
- Department of Chemistry, College of Science, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Mohanad Abdullah
- Department of Chemistry, College of Science, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Fuad Al-Rimawi
- Department of Chemistry, Faculty of Science and Technology, Al-Quds University, East Jerusalem, Palestine
| |
Collapse
|
6
|
Electric field-assisted multiphase extraction to increase selectivity and sensitivity in liquid chromatography-mass spectrometry and paper spray mass spectrometry. Talanta 2021; 224:121887. [PMID: 33379096 DOI: 10.1016/j.talanta.2020.121887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022]
Abstract
In this work, for the first time, chromatographic paper was used for a multiphase extraction assisted by an electric field (MPEF) and directly coupled to paper spray mass spectrometry (PS-MS). Using this approach, five tricyclic antidepressants (TCAs) were determined in oral fluid. Firstly, the MPEF conditions were optimized using liquid chromatography-mass spectrometry (LC-MS/MS). The effects of the chromatographic paper and the types of electrolyte used in the acceptor phase, the organic solvent type and the amount used in the donor phase, the extraction time, and the applied electric potential were all investigated. After optimization, the analytes were extracted from the donor solution (sample and acetonitrile 1:1 (v/v)) over a period of 10 min at 300 V, crossing the free liquid membrane (1-octanol) and reaching the acceptor phase (chromatographic paper wetted with 400 mmol L-1 acetic acid). The method using LC-MS/MS was validated, demonstrating a linear range from 2 to 12 ng mL-1, with detection and quantification limits of 0.13-0.25 and 0.44-0.84 ng mL-1, respectively, an intraday precision of less than 20%, and no matrix effect observed. The optimized MPEF conditions were then applied to determine TCAs by PS-MS and for this analysis cyclobenzaprine was used as an internal standard. The easy, fast and direct approach of coupling MPEF with PS-MS analysis, as well as the pre-concentration and the low standard deviation of replicates (less than 20%), demonstrates that this method can be useful for screening in clinical and toxicological analysis.
Collapse
|
7
|
Analysis of basic drugs in biological samples using dynamic single-interface hollow fiber liquid-phase microextraction combined with fast electromembrane extraction. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Mahdavi P, Nojavan S, Asadi S. An investigation on the effect of filtration and dilution of biological samples on electromembrane extraction efficiency: Determination of basic drugs in plasma and urine samples. SEPARATION SCIENCE PLUS 2020. [DOI: 10.1002/sscp.202000058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Parisa Mahdavi
- Department of analytical chemistry and pollutants Shahid Beheshti University Tehran Tehran Iran
| | - Saeed Nojavan
- Department of analytical chemistry and pollutants Shahid Beheshti University Tehran Tehran Iran
| | - Sakine Asadi
- Department of analytical chemistry and pollutants Shahid Beheshti University Tehran Tehran Iran
| |
Collapse
|
9
|
Electromembrane extraction of phenytoin from biological fluids: A survey on the effects of molecularly imprinted polymer and carbon nanotubes on extraction efficiency. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Behpour M, Nojavan S, Asadi S, Shokri A. Combination of gel-electromembrane extraction with switchable hydrophilicity solvent-based homogeneous liquid-liquid microextraction followed by gas chromatography for the extraction and determination of antidepressants in human serum, breast milk and wastewater. J Chromatogr A 2020; 1621:461041. [DOI: 10.1016/j.chroma.2020.461041] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/17/2020] [Accepted: 03/09/2020] [Indexed: 11/28/2022]
|
11
|
Rabiee N, Safarkhani M, Rabiee M. Rapid Electrochemical Ultra-Sensitive Evaluation and Determination of Daptomycin Based on Continuous Cyclic Voltammetry. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412914666181017134015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
In this work, a novel and extra sensitive blood sample determination method
for on-line monitoring of Daptomycin is represented.
Materials and Methods:
This technique is in accordance with the electro-membrane extraction (EME)
and stripping fast Fourier transform continuous cyclic voltammetry (SFFTCCV) coupling. Briefly, the
potential waveform had become constantly utilized over a Gold Electrode and the electrode impulse
was acquired by taking away the base current and developing the current in the particular potential area
of oxidation of sample.
Results:
This method was performed by utilizing a DC potential and migration of Daptomycin from the
analyte fluid to the layer of 4-methyl-2-pentanol as well as following migration to the acceptor fluid.
Conclusion:
A low and valuable detection limit of 3.5 ng ml-1 and quantification limit of 10.2 ng ml-1
are considered as a part of the sensible results of this experiment. Furthermore, efficient linearity in the
range of 10.0-600 ng ml-1 was observed.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Moein Safarkhani
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
12
|
Yaripour S, Ebrahimi S, Mohammadi A. Quantitative analysis of phenobarbital in biological fluids: Analyte enrichment by an electrically-assisted microextraction technique. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000417839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
| | | | - Ali Mohammadi
- Tehran University of Medical Sciences, Iran; Tehran University of Medical Sciences, Iran
| |
Collapse
|
13
|
Mollahosseini A, Elyasi Y, Rastegari M. Flat membrane-based electromembrane extraction coupled with UV–visible spectrophotometry for the determination of diethylhexyl phthalate in water samples. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Abstract
Saliva, as the first body fluid encountering with the exogenous materials, has good correlation with blood and plays an important role in bioanalysis. However, saliva has not been studied as much as the other biological fluids mainly due to restricted access to its large volumes. In recent years, there is a growing interest for saliva analysis owing to the emergence of miniaturized sample preparation methods. The purpose of this paper is to review all microextraction methods and their principles of operation. In the following, we examine the methods used to analyze saliva up to now and discuss the potential of the other microextraction methods for saliva analysis to encourage research groups for more focus on this important subject area.
Collapse
|
15
|
Rahimi A, Nojavan S. Electromembrane extraction of verapamil and riluzole from urine and wastewater samples using a mixture of organic solvents as a supported liquid membrane: Study on electric current variations. J Sep Sci 2018; 42:566-573. [PMID: 30371989 DOI: 10.1002/jssc.201800741] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/10/2018] [Accepted: 10/24/2018] [Indexed: 11/10/2022]
Abstract
In this study, the application of a mixture of organic solvents as a supported liquid membrane for improving the efficiency of the electromembrane extraction procedure was investigated. The extraction process was followed by high-performance liquid chromatography analysis of two model drugs (verapamil and riluzole). In this research, four organic solvents, including 1-heptanol, 1-octanol, 2-nitrophenyl octyl ether, and 2-ethyl hexanol, were selected as model solvents and different binary mixtures (v/v 2:1, 1:1 and 1:2) were used as the supported liquid membrane. The mixture of 2-ethyl hexanol and 1-otanol (v/v, 2:1) improved the extraction efficiency of model drugs by 1.5 to 12 times. It was found that extraction efficiency is greatly influenced by the level of electric current. In this study, for various mixtures of organic solvents, the electric current fluctuated between 50 and 2500 μA, and the highest extraction efficiencies were obtained with low and stable electric currents. Finally, the optimized extraction condition was validated and applied for the determination of model drugs in urine and wastewater samples.
Collapse
Affiliation(s)
- Atyeh Rahimi
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, Iran
| | - Saeed Nojavan
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
16
|
Seidi S, Rezazadeh M, Yamini Y. Pharmaceutical applications of liquid-phase microextraction. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Nys G, Fillet M. Microfluidics contribution to pharmaceutical sciences: From drug discovery to post marketing product management. J Pharm Biomed Anal 2018; 159:348-362. [DOI: 10.1016/j.jpba.2018.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/18/2022]
|
18
|
Nojavan S, Shaghaghi H, Rahmani T, Shokri A, Nasiri-Aghdam M. Combination of electromembrane extraction and electro-assisted liquid-liquid microextraction: A tandem sample preparation method. J Chromatogr A 2018; 1563:20-27. [DOI: 10.1016/j.chroma.2018.05.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/18/2018] [Accepted: 05/29/2018] [Indexed: 11/25/2022]
|
19
|
Flow Injection Analysis with Direct UV Detection Following Electric Field Driven Membrane Extraction. Molecules 2018; 23:molecules23051000. [PMID: 29695126 PMCID: PMC6100346 DOI: 10.3390/molecules23051000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/21/2022] Open
Abstract
A method for on-line matrix elimination to enable selective quantification of ultraviolet absorbing analytes by a flow-injection analysis procedure is described. Selectivity is achieved by electric field driven extraction across a polymer inclusion membrane. The method was demonstrated on the example of the determination of naproxen from spiked human urine. Membranes of 10 μm thickness were employed which consisted of 7.5 mg cellulose triacetate as base polymer, 5 mg of o-nitrophenyl octyl ether as plasticizer and 7.5 mg of Aliquat 336 as cationic carrier. Ten μL of sample was introduced into a continuous stream of background solution consisting of 100 µM aqueous NaClO4 with a flow rate of 2 μL/min while applying a voltage of 150 V to the extraction cell. The target ion was electrokinetically transported across the membrane and enriched in 1.5 μL of a stagnant acceptor solution. This was subsequently pumped past a flow-through UV detector for quantification. The method showed a linear range from 5 to 200 µM with a correlation coefficient of 0.9978 and a reproducibility of typically 7% (n = 8). The detection limit of the method for naproxen was 2 µM.
Collapse
|
20
|
Yaripour S, Mohammadi A, Esfanjani I, Walker RB, Nojavan S. Quantitation of zolpidem in biological fluids by electro-driven microextraction combined with HPLC-UV analysis. EXCLI JOURNAL 2018; 17:349-361. [PMID: 29805344 PMCID: PMC5962899 DOI: 10.17179/excli2018-1140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/22/2018] [Indexed: 11/28/2022]
Abstract
In this study, for the first time, an electro-driven microextraction method named electromembrane extraction combined with a simple high performance liquid chromatography and ultraviolet detection was developed and validated for the quantitation of zolpidem in biological samples. Parameters influencing electromembrane extraction were evaluated and optimized. The membrane consisted of 2-ethylhexanol immobilized in the pores of a hollow fiber. As a driving force, a 150 V electric field was applied to facilitate the analyte migration from the sample matrix to an acceptor solution through a supported liquid membrane. The pHs of donor and acceptor solutions were optimized to 6.0 and 2.0, respectively. The enrichment factor was obtained >75 within 15 minutes. The effect of carbon nanotubes (as solid nano-sorbents) on the membrane performance and EME efficiency was evaluated. The method was linear over the range of 10-1000 ng/mL for zolpidem (R2 >0.9991) with repeatability ( %RSD) between 0.3 % and 7.3 % (n = 3). The limits of detection and quantitation were 3 and 10 ng/mL, respectively. The sensitivity of HPLC-UV for the determination of zolpidem was enhanced by electromembrane extraction. Finally, the method was employed for the quantitation of zolpidem in biological samples with relative recoveries in the range of 60-79 %.
Collapse
Affiliation(s)
- Saeid Yaripour
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmaceutical and Food Control, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Mohammadi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Isa Esfanjani
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Roderick B Walker
- Faculty of Pharmacy, Rhodes University, Grahamstown 6140, South Africa
| | - Saeed Nojavan
- Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
21
|
Sedehi S, Tabani H, Nojavan S. Electro-driven extraction of polar compounds using agarose gel as a new membrane: Determination of amino acids in fruit juice and human plasma samples. Talanta 2018; 179:318-325. [DOI: 10.1016/j.talanta.2017.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 11/30/2022]
|
22
|
Kim JM, Myung SW. Determination of Non-Steroidal Anti-Inflammatory Drugs in Urine by HPLC-UV/Vis Analysis Coupled with Electromembrane Extraction. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jin Mun Kim
- Department of Chemistry; Kyonggi University; Suwon 16227 South Korea
| | - Seung-Woon Myung
- Department of Chemistry; Kyonggi University; Suwon 16227 South Korea
| |
Collapse
|
23
|
Baharfar M, Yamini Y, Seidi S, Karami M. Quantitative analysis of clonidine and ephedrine by a microfluidic system: On-chip electromembrane extraction followed by high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:313-321. [DOI: 10.1016/j.jchromb.2017.10.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/20/2017] [Accepted: 10/31/2017] [Indexed: 02/06/2023]
|
24
|
|
25
|
Nojavan S, Sirani M, Asadi S. Investigation of the continuous flow of the sample solution on the performance of electromembrane extraction: Comparison with conventional procedure. J Sep Sci 2017; 40:3889-3897. [DOI: 10.1002/jssc.201700528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/02/2017] [Accepted: 07/26/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Saeed Nojavan
- Department of analytical chemistry and pollutants; Shahid Beheshti University; Tehran Iran
| | - Mahsa Sirani
- Department of analytical chemistry and pollutants; Shahid Beheshti University; Tehran Iran
| | - Sakine Asadi
- Department of analytical chemistry and pollutants; Shahid Beheshti University; Tehran Iran
| |
Collapse
|
26
|
Tabani H, Asadi S, Nojavan S, Parsa M. Introduction of agarose gel as a green membrane in electromembrane extraction: An efficient procedure for the extraction of basic drugs with a wide range of polarities. J Chromatogr A 2017; 1497:47-55. [DOI: 10.1016/j.chroma.2017.03.075] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 11/16/2022]
|
27
|
Pedersen-Bjergaard S, Huang C, Gjelstad A. Electromembrane extraction-Recent trends and where to go. J Pharm Anal 2017; 7:141-147. [PMID: 29404030 PMCID: PMC5790682 DOI: 10.1016/j.jpha.2017.04.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 11/28/2022] Open
Abstract
Electromembrane extraction (EME) is an analytical microextraction technique, where charged analytes (such as drug substances) are extracted from an aqueous sample (such as a biological fluid), through a supported liquid membrane (SLM) comprising a water immiscible organic solvent, and into an aqueous acceptor solution. The driving force for the extraction is an electrical potential (dc) applied across the SLM. In this paper, EME is reviewed. First, the principle for EME is explained with focus on extraction of cationic and anionic analytes, and typical performance data are presented. Second, papers published in 2016 are reviewed and discussed with focus on (a) new SLMs, (b) new support materials for the SLM, (c) new sample additives improving extraction, (d) new technical configurations, (e) improved theoretical understanding, and (f) pharmaceutical new applications. Finally, important future research objectives and directions are defined for further development of EME, with the aim of establishing EME in the toolbox of future analytical laboratories.
Collapse
Affiliation(s)
- Stig Pedersen-Bjergaard
- School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway.,Faculty of Health and Medical Sciences, School of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Chuixiu Huang
- School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Astrid Gjelstad
- School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| |
Collapse
|
28
|
Yaripour S, Mohammadi A, Nojavan S. Electromembrane extraction of tartrazine from food samples: Effects of nano-sorbents on membrane performance. J Sep Sci 2016; 39:2642-51. [DOI: 10.1002/jssc.201600071] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Saeid Yaripour
- Department of Drug and Food Control, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Ali Mohammadi
- Department of Drug and Food Control, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
- Nanotechnology Research Centre, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Saeed Nojavan
- Faculty of Chemistry; Shahid Beheshti University; Evin Tehran Iran
| |
Collapse
|
29
|
Mohammadkhani E, Yamini Y, Rezazadeh M, Seidi S. Electromembrane surrounded solid phase microextraction using electrochemically synthesized nanostructured polypyrrole fiber. J Chromatogr A 2016; 1443:75-82. [DOI: 10.1016/j.chroma.2016.03.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/28/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
|
30
|
Nojavan S, Asadi S. Electromembrane extraction using two separate cells: A new design for simultaneous extraction of acidic and basic compounds. Electrophoresis 2015; 37:587-94. [DOI: 10.1002/elps.201500455] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/13/2015] [Accepted: 11/14/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Saeed Nojavan
- Faculty of Chemistry; ShahidBeheshti University; Tehran Iran
| | - Sakine Asadi
- Faculty of Chemistry; ShahidBeheshti University; Tehran Iran
| |
Collapse
|
31
|
Huang C, Seip KF, Gjelstad A, Pedersen-Bjergaard S. Electromembrane extraction for pharmaceutical and biomedical analysis – Quo vadis. J Pharm Biomed Anal 2015; 113:97-107. [DOI: 10.1016/j.jpba.2015.01.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/15/2015] [Accepted: 01/18/2015] [Indexed: 01/26/2023]
|
32
|
Development and evaluation of electromembrane extraction across a hollow polymer inclusion membrane. J Chromatogr A 2015; 1406:34-9. [DOI: 10.1016/j.chroma.2015.06.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/09/2015] [Accepted: 06/09/2015] [Indexed: 11/20/2022]
|
33
|
Zhang X, Guo L, Zhang D, Ge X, Ye J, Chu Q. Sensitive Determination of Bromate in Water Samples by Capillary Electrophoresis Coupled with Electromembrane Extraction. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0208-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Selective electromembrane extraction based on isoelectric point: Fundamental studies with angiotensin II antipeptide as model analyte. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Abstract
Modern requirements in the field of bioanalysis often involve miniaturized, high-throughput sample preparation techniques that consume low amounts of both sample and potentially hazardous organic solvents. Electromembrane extraction is one technique that meets several of these requirements. In this principle analytes are selectively extracted from a biological matrix, through a supported liquid membrane and into an aqueous acceptor solution. The whole extraction process is facilitated by an electric field across the supported liquid membrane, which greatly reduces the extraction time. This review will give a thorough overview of recent advances in bioanalytical applications involving electromembrane extraction, and discuss both possibilities and challenges of the technique in a bioanalytical setting.
Collapse
|
36
|
Hasheminasab KS, Fakhari AR. Application of nonionic surfactant as a new method for the enhancement of electromembrane extraction performance for determination of basic drugs in biological samples. J Chromatogr A 2015; 1378:1-7. [DOI: 10.1016/j.chroma.2014.11.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 11/24/2014] [Accepted: 11/24/2014] [Indexed: 01/21/2023]
|
37
|
Petersen NJ, Jensen H, Pedersen-Bjergaard S. On-chip electromembrane extraction for monitoring drug metabolism in real time by electrospray ionization mass spectrometry. Methods Mol Biol 2015; 1274:171-182. [PMID: 25673492 DOI: 10.1007/978-1-4939-2353-3_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Sample preparation is an essential step in any bioanalytical procedure and very often the most challenging step in method development. Most of the currently used methods require a relatively large amount of sample and are time consuming. Here, we describe a new approach based on electromembrane extraction (EME) integrated in microfluidic polymer chips. This procedure is fast, requires only small amounts of sample, and may thus be used for monitoring drug metabolism and the formation of metabolites in real time.
Collapse
Affiliation(s)
- Nickolaj J Petersen
- Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark,
| | | | | |
Collapse
|
38
|
Exhaustive extraction of peptides by electromembrane extraction. Anal Chim Acta 2015; 853:328-334. [DOI: 10.1016/j.aca.2014.10.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/05/2014] [Accepted: 10/11/2014] [Indexed: 11/21/2022]
|
39
|
Schoonen JW, van Duinen V, Oedit A, Vulto P, Hankemeier T, Lindenburg PW. Continuous-flow microelectroextraction for enrichment of low abundant compounds. Anal Chem 2014; 86:8048-56. [PMID: 24892382 DOI: 10.1021/ac500707v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We present a continuous-flow microelectroextraction flow cell that allows for electric field enhanced extraction of analytes from a large volume (1 mL) of continuously flowing donor phase into a micro volume of stagnant acceptor phase (13.4 μL). We demonstrate for the first time that the interface between the stagnant acceptor phase and fast-flowing donor phase can be stabilized by a phaseguide. Chip performance was assessed by visual experiments using crystal violet. Then, extraction of a mixture of acylcarnitines was assessed by off-line coupling to reversed phase liquid chromatography coupled to time-of-flight mass spectrometry, resulting in concentration factors of 80.0 ± 9.2 times for hexanoylcarnitine, 73.8 ± 9.1 for octanoylcarnitine, and 34.1 ± 4.7 times for lauroylcarnitine, corresponding to recoveries of 107.8 ± 12.3%, 98.9 ± 12.3%, and 45.7 ± 6.3%, respectively, in a sample of 500 μL delivered at a flow of 50 μL min(-1) under an extraction voltage of 300 V. Finally, the method was applied to the analysis of acylcarnitines spiked to urine, resulting in detection limits as low as 0.3-2 nM. Several putative endogenous acylcarnitines were found. The current flowing-to-stagnant phase microelectroextraction setup allows for the extraction of milliliter range volumes and is, as a consequence, very suited for analysis of low-abundant metabolites.
Collapse
Affiliation(s)
- Jan-Willem Schoonen
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University , Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
Biological sample preparation: attempts on productivity increasing in bioanalysis. Bioanalysis 2014; 6:1691-710. [DOI: 10.4155/bio.14.118] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sample preparation is an important step of any biomedical analysis. Development and validation of fast, reproducible and reliable sample preparation methods would be very helpful in increasing productivity. Except for a few direct injection methods, almost all biological samples should at least be diluted before any analysis. Sometimes dilution is not possible because of the low concentration of the target analyte in the sample, and alternative pretreatments, such as filtration, precipitation and sample clean up using different extraction methods, are needed. This review focuses on the recent achievements in the pretreatment of biological samples and investigates them in six categories (i.e., dilution, filtration/dialysis, precipitation, extraction [solid-phase extraction, liquid–liquid extraction], novel techniques [turbulent flow chromatography, immunoaffinity method, electromembrane extraction] and combined methods). Each category will be discussed according to its productivity rate and suitability for routine analysis, and the discussed methods will be compared according to the mentioned indices.
Collapse
|
41
|
Kubáň P, Boček P. Micro-electromembrane extraction across free liquid membranes. Instrumentation and basic principles. J Chromatogr A 2014; 1346:25-33. [DOI: 10.1016/j.chroma.2014.04.047] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 11/16/2022]
|
42
|
Micro-electromembrane extraction across free liquid membranes. Extractions of basic drugs from undiluted biological samples. J Chromatogr A 2014; 1337:32-9. [DOI: 10.1016/j.chroma.2014.02.046] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 11/22/2022]
|
43
|
Li B, Petersen NJ, Payán MDR, Hansen SH, Pedersen-Bjergaard S. Design and implementation of an automated liquid-phase microextraction-chip system coupled on-line with high performance liquid chromatography. Talanta 2014; 120:224-9. [DOI: 10.1016/j.talanta.2013.12.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/29/2013] [Accepted: 12/06/2013] [Indexed: 11/24/2022]
|
44
|
Huang C, Eibak LEE, Gjelstad A, Shen X, Trones R, Jensen H, Pedersen-Bjergaard S. Development of a flat membrane based device for electromembrane extraction: A new approach for exhaustive extraction of basic drugs from human plasma. J Chromatogr A 2014; 1326:7-12. [DOI: 10.1016/j.chroma.2013.12.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
|
45
|
See HH, Hauser PC. Electro-driven extraction of low levels of lipophilic organic anions and cations across plasticized cellulose triacetate membranes: Effect of the membrane composition. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2013.08.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2011-2013). Electrophoresis 2013; 35:69-95. [PMID: 24255019 DOI: 10.1002/elps.201300331] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 01/15/2023]
Abstract
The review presents a comprehensive survey of recent developments and applications of capillary and microchip electroseparation methods (zone electrophoresis, ITP, IEF, affinity electrophoresis, EKC, and electrochromatography) for analysis, isolation, purification, and physicochemical and biochemical characterization of peptides. Advances in the investigation of electromigration properties of peptides, in the methodology of their analysis, including sample preseparation, preconcentration and derivatization, adsorption suppression and EOF control, as well as in detection of peptides, are presented. New developments in particular CE and CEC modes are reported and several types of their applications to peptide analysis are described: conventional qualitative and quantitative analysis, determination in complex (bio)matrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid, sequence and chiral analysis, and peptide mapping of proteins. Some micropreparative peptide separations are shown and capabilities of CE and CEC techniques to provide relevant physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
47
|
Dugstad HB, Petersen NJ, Jensen H, Gabel-Jensen C, Hansen SH, Pedersen-Bjergaard S. Development and characterization of a small electromembrane extraction probe coupled with mass spectrometry for real-time and online monitoring of in vitro drug metabolism. Anal Bioanal Chem 2013; 406:421-9. [DOI: 10.1007/s00216-013-7378-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/11/2013] [Accepted: 09/16/2013] [Indexed: 11/28/2022]
|
48
|
Eibak LEE, Parmer MP, Rasmussen KE, Pedersen-Bjergaard S, Gjelstad A. Parallel electromembrane extraction in a multiwell plate. Anal Bioanal Chem 2013; 406:431-40. [DOI: 10.1007/s00216-013-7345-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 12/28/2022]
|
49
|
Seip KF, Gjelstad A, Pedersen-Bjergaard S. Electromembrane extraction from aqueous samples containing polar organic solvents. J Chromatogr A 2013; 1308:37-44. [DOI: 10.1016/j.chroma.2013.07.105] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/18/2013] [Accepted: 07/31/2013] [Indexed: 11/28/2022]
|
50
|
Schmidt-Marzinkowski J, See HH, Hauser PC. Electric Field Driven Extraction of Inorganic Anions Across a Polymer Inclusion Membrane. ELECTROANAL 2013. [DOI: 10.1002/elan.201300176] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|