1
|
Benedyk-Machaczka M, Mydel P, Mäder K, Kaminska M, Taudte N, Naumann M, Kleinschmidt M, Sarembe S, Kiesow A, Eick S, Buchholz M. Preclinical Validation of MIN-T: A Novel Controlled-Released Formulation for the Adjunctive Local Application of Minocycline in Periodontitis. Antibiotics (Basel) 2024; 13:1012. [PMID: 39596707 PMCID: PMC11591261 DOI: 10.3390/antibiotics13111012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Adjunctive treatment of periodontitis lacks solutions which allow for enough time for wound healing in the periodontal pockets by avoiding fast re-colonization. Such a solution might be an antibiotic-containing formulation with a controlled release over a period of weeks. Here, a recently described minocycline-containing approach is qualified for further clinical development by focusing on proof-of-concept, systemic burden, resistance development, and degradation studies. Methods: Animal studies were done in two different (mouse-chamber, rat Porphyromonas gingivalis challenging) models, including effects on inflammation markers, bone loss, and bone structure. Also, serum concentrations of minocycline after local application were determined by HPLC-MS/MS. The resistance status of bacterial clinical isolates against minocycline was investigated and the degradation of the formulation was characterized by laser scanning and scanning electron microscopy. Results: Animal studies clearly demonstrated the applicability of the new formulation in the investigated models. Inflammation markers decreased in a dose-dependent manner and reduced bone loss compared to non-treated group was observed. Therefore, the systemic burden of the antibiotic was neglectable. Minocycline is still effective against oral pathogens; resistance development was not seen. The biodegradable thread was first swollen and subsequently degraded over a period of weeks. Conclusions: The results support the continued clinical development of this new formulation. A phase I clinical trial is planned to further evaluate its safety and efficacy.
Collapse
Affiliation(s)
- Małgorzata Benedyk-Machaczka
- H&G Ltd., 31-431 Krakow, Poland; (M.B.-M.)
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Piotr Mydel
- H&G Ltd., 31-431 Krakow, Poland; (M.B.-M.)
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany;
| | - Marta Kaminska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Nadine Taudte
- PerioTrap Pharmaceuticals GmbH, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Marcel Naumann
- Department Drug Design and Analytical Chemistry, Fraunhofer IZI-MWT, Weinbergweg 22, 06120 Halle (Saale), Germany; (M.N.)
| | - Martin Kleinschmidt
- Department Drug Design and Analytical Chemistry, Fraunhofer IZI-MWT, Weinbergweg 22, 06120 Halle (Saale), Germany; (M.N.)
| | - Sandra Sarembe
- Department Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure and Systems IMWS, Walter-Huelse-Strasse 1, 06120 Halle (Saale), Germany
| | - Andreas Kiesow
- Department Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure and Systems IMWS, Walter-Huelse-Strasse 1, 06120 Halle (Saale), Germany
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, CH-3010 Bern, Switzerland;
| | - Mirko Buchholz
- PerioTrap Pharmaceuticals GmbH, Weinbergweg 22, 06120 Halle (Saale), Germany
| |
Collapse
|
2
|
Tone M, Iwahori K, Hirata M, Ueyama A, Tani A, Haruta JI, Takeda Y, Shintani Y, Kumanogoh A, Wada H. Tetracyclines enhance antitumor T-cell immunity via the Zap70 signaling pathway. J Immunother Cancer 2024; 12:e008334. [PMID: 38621815 PMCID: PMC11328671 DOI: 10.1136/jitc-2023-008334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Cancer immunotherapy including immune checkpoint inhibitors is only effective for a limited population of patients with cancer. Therefore, the development of novel cancer immunotherapy is anticipated. In preliminary studies, we demonstrated that tetracyclines enhanced T-cell responses. Therefore, we herein investigated the efficacy of tetracyclines on antitumor T-cell responses by human peripheral T cells, murine models, and the lung tumor tissues of patients with non-small cell lung cancer (NSCLC), with a focus on signaling pathways in T cells. METHODS The cytotoxicity of peripheral and lung tumor-infiltrated human T cells against tumor cells was assessed by using bispecific T-cell engager (BiTE) technology (BiTE-assay system). The effects of tetracyclines on T cells in the peripheral blood of healthy donors and the tumor tissues of patients with NSCLC were examined using the BiTE-assay system in comparison with anti-programmed cell death-1 (PD-1) antibody, nivolumab. T-cell signaling molecules were analyzed by flow cytometry, ELISA, and qRT-PCR. To investigate the in vivo antitumor effects of tetracyclines, tetracyclines were administered orally to BALB/c mice engrafted with murine tumor cell lines, either in the presence or absence of anti-mouse CD8 inhibitors. RESULTS The results obtained revealed that tetracyclines enhanced antitumor T-cell cytotoxicity with the upregulation of granzyme B and increased secretion of interferon-γ in human peripheral T cells and the lung tumor tissues of patients with NSCLC. The analysis of T-cell signaling showed that CD69 in both CD4+ and CD8+ T cells was upregulated by minocycline. Downstream of T-cell receptor signaling, Zap70 phosphorylation and Nur77 were also upregulated by minocycline in the early phase after T-cell activation. These changes were not observed in T cells treated with anti-PD-1 antibodies under the same conditions. The administration of tetracyclines exhibited antitumor efficacy with the upregulation of CD69 and increases in tumor antigen-specific T cells in murine tumor models. These changes were canceled by the administration of anti-mouse CD8 inhibitors. CONCLUSIONS In conclusion, tetracyclines enhanced antitumor T-cell immunity via Zap70 signaling. These results will contribute to the development of novel cancer immunotherapy.
Collapse
Affiliation(s)
- Mari Tone
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kota Iwahori
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Michinari Hirata
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Biopharmaceutical Research Division, Shionogi & Co., Ltd, Osaka, Japan
| | - Azumi Ueyama
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Biopharmaceutical Research Division, Shionogi & Co., Ltd, Osaka, Japan
| | - Akiyoshi Tani
- Compound Library Screening Center, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Jun-Ichi Haruta
- Lead Explorating Units, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Osaka, Japan
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan
| | - Hisashi Wada
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Qu X, Bian X, Chen Y, Hu J, Huang X, Wang Y, Fan Y, Wu H, Li X, Li Y, Guo B, Liu X, Zhang J. Polymyxin B Combined with Minocycline: A Potentially Effective Combination against blaOXA-23-harboring CRAB in In Vitro PK/PD Model. Molecules 2022; 27:molecules27031085. [PMID: 35164349 PMCID: PMC8840471 DOI: 10.3390/molecules27031085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Polymyxin-based combination therapy is commonly used to treat carbapenem-resistant Acinetobacter baumannii (CRAB) infections. In the present study, the bactericidal effect of polymyxin B and minocycline combination was tested in three CRAB strains containing blaOXA-23 by the checkerboard assay and in vitro dynamic pharmacokinetics/pharmacodynamics (PK/PD) model. The combination showed synergistic or partial synergistic effect (fractional inhibitory concentration index ≤0.56) on the tested strains in checkboard assays. The antibacterial activity was enhanced in the combination group compared with either monotherapy in in vitro PK/PD model. The combination regimen (simultaneous infusion of 0.75 mg/kg polymyxin B and 100 mg minocycline via 2 h infusion) reduced bacterial colony counts by 0.9–3.5 log10 colony forming units per milliliter (CFU/mL) compared with either drug alone at 24 h. In conclusion, 0.75 mg/kg polymyxin B combined with 100 mg minocycline via 2 h infusion could be a promising treatment option for CRAB bloodstream infections.
Collapse
Affiliation(s)
- Xingyi Qu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuancheng Chen
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiali Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Xiaolan Huang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Yu Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Yaxin Fan
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Hailan Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Xin Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Yi Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Beining Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
- Correspondence: (X.L.); (J.Z.); Tel.: +86-21-52888190 (J.Z.)
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
- Correspondence: (X.L.); (J.Z.); Tel.: +86-21-52888190 (J.Z.)
| |
Collapse
|
4
|
Rahal M, Atassi Y, Alghoraibi I. Quenching photoluminescence of Carbon Quantum Dots for detecting and tracking the release of Minocycline. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Kong B, Cao Y, Yu Y, Zhao S. Synthesis of sodium thiosulfate-reduced copper nanoclusters using bovine serum albumin as a template and their applications in the fluorometric detection of minocycline. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Bayliss MAJ, Kyriakides M, Rigdova K, Grier S, Lovering AM, Noel A, MacGowan A. Choosing the right anticoagulant: a critical choice when assessing pharmacokinetic parameters for tetracyclines obtained from human blood samples. J Antimicrob Chemother 2019; 74:3643-3645. [PMID: 31730157 DOI: 10.1093/jac/dkz382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mark A J Bayliss
- Department of Infection Sciences, Severn Pathology Building, North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury-on-Trym, Bristol BS10 5NB, UK
| | - Mathew Kyriakides
- Department of Infection Sciences, Severn Pathology Building, North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury-on-Trym, Bristol BS10 5NB, UK
| | - Katarina Rigdova
- Department of Infection Sciences, Severn Pathology Building, North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury-on-Trym, Bristol BS10 5NB, UK
| | - Sally Grier
- Department of Infection Sciences, Severn Pathology Building, North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury-on-Trym, Bristol BS10 5NB, UK
| | - Andrew M Lovering
- Department of Infection Sciences, Severn Pathology Building, North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury-on-Trym, Bristol BS10 5NB, UK
| | - Alan Noel
- Department of Infection Sciences, Severn Pathology Building, North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury-on-Trym, Bristol BS10 5NB, UK
| | - Alasdair MacGowan
- Department of Infection Sciences, Severn Pathology Building, North Bristol NHS Trust, Southmead Hospital, Southmead Road, Westbury-on-Trym, Bristol BS10 5NB, UK
| |
Collapse
|
7
|
Bayliss MA, Rigdova K, Kyriakides M, Grier S, Lovering AM, Williams H, Griffith DC, MacGowan A. Development, validation and application of a novel HPLC-MS/MS method for the measurement of minocycline in human plasma and urine. J Pharm Biomed Anal 2019; 169:90-98. [DOI: 10.1016/j.jpba.2019.02.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/01/2022]
|
8
|
Zhang N, Gu X, Ye X, Wu X, Zhang B, Zhang L, Shen X, Jiang H, Ding H. The PK/PD Interactions of Doxycycline against Mycoplasma gallisepticum. Front Microbiol 2016; 7:653. [PMID: 27199972 PMCID: PMC4854994 DOI: 10.3389/fmicb.2016.00653] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/19/2016] [Indexed: 01/02/2023] Open
Abstract
Mycoplasma gallisepticum is one of the most important pathogens that cause chronic respiratory disease in chicken. This study investigated the antibacterial activity of doxycycline against M. gallisepticum strain S6. In static time–killing studies with constant antibiotic concentrations [0–64 minimum inhibitory concentration (MIC)], M. gallisepticum colonies were quantified and kill rates were calculated to estimate the drug effect. The half-life of doxycycline in chicken was 6.51 ± 0.63 h. An in vitro dynamic model (the drug concentrations are fluctuant) was also established and two half-lives of 6.51 and 12 h were simulated. The samples were collected for drug concentration determination and viable counting of M. gallisepticum. In static time–killing studies, doxycycline produced a maximum antimycoplasmal effect of 5.62log10 (CFU/mL) reduction and the maximum kill rate was 0.11 h−1. In the in vitro dynamic model, doxycycline had a mycoplasmacidal activity in the two regimens, and the maximum antimycoplasmal effects were 4.1 and 4.75log10 (CFU/mL) reduction, respectively. Furthermore, the cumulative percentage of time over a 48-h period that the drug concentration exceeds the MIC (%T > MIC) was the pharmacokinetic–pharmacodynamic index that best correlated with antimicrobial efficacy (R2 = 0.986, compared with 0.897 for the peak level divided by the MIC and 0.953 for the area under the concentration–time curve over 48 h divided by the MIC). The estimated %T > MIC values for 0log10 (CFU/mL) reduction, 2log10 (CFU/mL) reduction and 3log10 (CFU/mL) reduction were 32.48, 45.68, and 54.36%, respectively, during 48 h treatment period of doxycycline. In conclusion, doxycycline shows excellent effectiveness and time-dependent characteristics against M. gallisepticum strain S6 in vitro. Additionally, these results will guide optimal dosing strategies of doxycycline in M. gallisepticum infection.
Collapse
Affiliation(s)
- Nan Zhang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety evaluation, South China Agricultural University Guangzhou, China
| | - Xiaoyan Gu
- Guangdong Key Laboratory for Veterinary Drug Development and Safety evaluation, South China Agricultural University Guangzhou, China
| | - Xiaomei Ye
- Guangdong Key Laboratory for Veterinary Drug Development and Safety evaluation, South China Agricultural University Guangzhou, China
| | - Xun Wu
- Guangdong Key Laboratory for Veterinary Drug Development and Safety evaluation, South China Agricultural University Guangzhou, China
| | - Bingxu Zhang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety evaluation, South China Agricultural University Guangzhou, China
| | - Longfei Zhang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety evaluation, South China Agricultural University Guangzhou, China
| | - Xiangguang Shen
- Guangdong Key Laboratory for Veterinary Drug Development and Safety evaluation, South China Agricultural University Guangzhou, China
| | - Hongxia Jiang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety evaluation, South China Agricultural University Guangzhou, China
| | - Huanzhong Ding
- Guangdong Key Laboratory for Veterinary Drug Development and Safety evaluation, South China Agricultural University Guangzhou, China
| |
Collapse
|
9
|
Abstract
Methods started in discovery are optimized as they progress through preclinical and clinical development. Making a robust assay includes testing individual steps for consistency and points of failure. Assays may be transferred, optimized and revalidated several times. A rugged assay will not only meet regulatory requirements, but will execute with a low failure rate and confirm results under repeat analysis. Challenging aspects such as differential recovery, sample stabilization, resolution of isomers or conjugate analysis must be tackled and made routine. The proper selection of the IS can overcome limitations. It is best to know the potential points of failure before a study has started, but lessons learned from each study also provide invaluable insights to improve assay ruggedness.
Collapse
|