1
|
Janssens LK, Van Eenoo P, Stove CP. Review on activity-based detection of doping substances and growth promotors in biological matrices: do bioassays deserve a place in control programs? Anal Chim Acta 2025; 1334:343244. [PMID: 39638460 DOI: 10.1016/j.aca.2024.343244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Control programs such as anti-doping control and growth promotor residue surveillance programs are challenged by the emergence of designer drugs and the use of low-level drug cocktails. In order to cope with these challenges, the use of bioassays, measuring biological activity in a matrix, has been explored over the past two decades as a universal means to detect (combinations of) unknown drugs, regardless of their chemical structure. RESULTS This review compiles the experience on the use of activity-based assays to detect doping substances and growth promotors in biological matrices of humans (athletes) or live animals (race and/or food-producing animals). The aim is to learn from the scientific progress, going from initial research to the recent revival of this topic. Bioassay improvements and remaining limitations are discussed, along with a rational evaluation of possible applications of bioassays in control programs at their current functionality. Limitations include the possible interference by endogenous compounds and the challenge to detect metabolically activated (pro-)drugs. Nevertheless, successful validation of bioassays has been achieved, ensuring robust, reliable and valid results. SIGNIFICANCE We conclude by proposing three applications of bioassays that provide added-value to the current testing procedures: (i) characterization of compounds to provide indisputable proof of biological effects and to prioritize legislative (cf. expansion of bans) and research endeavors (cf. method development), (ii) bioassay-based screening of biological samples to direct intelligent sample storage, sample retesting and targeted athlete testing, (iii) bioassay-guided identification of drugs to overcome the challenges of suspicious peak selection, related to high-resolution techniques.
Collapse
Affiliation(s)
- Liesl K Janssens
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, 9000, Ghent, Belgium
| | - Peter Van Eenoo
- Doping Control Laboratory, Department Diagnostic Sciences, Ghent University, 9000, Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
2
|
Horn J. The dichotomy between health and drug abuse in bodybuilding. NORDIC STUDIES ON ALCOHOL AND DRUGS 2024; 41:212-225. [PMID: 38645972 PMCID: PMC11027851 DOI: 10.1177/14550725231206011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/21/2023] [Indexed: 04/23/2024] Open
Abstract
Aim: The aim of the present study was to investigate the expansion and prevalence of anabolic steroid use by examining the divergent effects between health and drug abuse and to create more awareness around the harmful consequences of these drugs when administered at abusive levels. Methods: A focused and concise literature search was conducted, and 101 high-quality articles were included in the review. Results: The findings underscore the adverse health risks of steroid abuse, emphasizing the stark contrast between health and drug abuse. Conclusions: While steroids and other performance-enhancing drugs can yield muscle growth, strength and even fat loss, abusing these substances can lead to adverse health outcomes. Furthermore, within the fitness subculture, particularly in the realm of bodybuilding, steroid abuse fosters an atmosphere of cheating and deception, frequently downplaying or ignoring the negative and sometimes deadly consequences it brings.
Collapse
|
3
|
Guan F, You Y, Fay S, Li X, Robinson MA. Novel Algorithms for Comprehensive Untargeted Detection of Doping Agents in Biological Samples. Anal Chem 2021; 93:7746-7753. [PMID: 34018396 DOI: 10.1021/acs.analchem.1c01273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To address the limitations of current targeted analytical methods that can only detect known doping agents, a novel methodology that permits untargeted drug detection (UDD) has been developed to help in the fight against doping in sports. Fifty-seven drugs were spiked into blank equine plasma and were treated as unknowns since their exact masses and chromatographic retention times were not utilized for detection. The spiked drugs were extracted from the plasma samples and were analyzed using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). The acquired LC-HRMS raw data files were processed using metabolomic software for compound detection and identification. For UDD with the resultant data, a mathematical model was created, and two algorithms were generated to calculate the ratio of the mean (ROM) and outlier index (OLI). Using ROM and OLI, the majority of the 57 drugs were accurately detected by name (52 of 57) or chemical formula (1 of 57). The limit of detection for the drugs was from tens of picograms to nanograms per milliliter. Xenobiotics and endogenous substances relevant to doping control were also identified using this untargeted approach following their extraction from real-world race samples, thus validating the UDD methodology. To the authors' knowledge, this is the first completely UDD methodological approach and represents significant advance toward using artificial intelligence for the detection of both known and emerging doping agents in sports.
Collapse
Affiliation(s)
- Fuyu Guan
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center Campus, 382 West Street Road, Kennett Square, Pennsylvania 19348, United States.,Pennsylvania Equine Toxicology and Research Laboratory, 220 East Rosedale Avenue, West Chester, Pennsylvania 19382, United States
| | - Youwen You
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center Campus, 382 West Street Road, Kennett Square, Pennsylvania 19348, United States.,Pennsylvania Equine Toxicology and Research Laboratory, 220 East Rosedale Avenue, West Chester, Pennsylvania 19382, United States
| | - Savannah Fay
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center Campus, 382 West Street Road, Kennett Square, Pennsylvania 19348, United States.,Pennsylvania Equine Toxicology and Research Laboratory, 220 East Rosedale Avenue, West Chester, Pennsylvania 19382, United States
| | - Xiaoqing Li
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center Campus, 382 West Street Road, Kennett Square, Pennsylvania 19348, United States.,Pennsylvania Equine Toxicology and Research Laboratory, 220 East Rosedale Avenue, West Chester, Pennsylvania 19382, United States
| | - Mary A Robinson
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, New Bolton Center Campus, 382 West Street Road, Kennett Square, Pennsylvania 19348, United States.,Pennsylvania Equine Toxicology and Research Laboratory, 220 East Rosedale Avenue, West Chester, Pennsylvania 19382, United States
| |
Collapse
|
4
|
Wilkin T, Baoutina A, Hamilton N. Equine performance genes and the future of doping in horseracing. Drug Test Anal 2017; 9:1456-1471. [DOI: 10.1002/dta.2198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Tessa Wilkin
- Vet Faculty; University of Sydney; Gunn Building, Sydney University, Camperdown NSW Australia
- Bioanalysis; The National Measurement Institute; 36 Bradfield Rd, Lindfield Sydney New South Wales Australia
| | - Anna Baoutina
- School of Life and Environmental Sciences, Faculty of Science; The University of Sydney; Bradfield Rd West Lindfield New South Wales Australia
| | - Natasha Hamilton
- Faculty of Veterinary Science; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
5
|
Fragkaki AG, Kioukia-Fougia N, Kiousi P, Kioussi M, Tsivou M. Challenges in detecting substances for equine anti-doping. Drug Test Anal 2017; 9:1291-1303. [DOI: 10.1002/dta.2162] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/19/2016] [Accepted: 01/09/2017] [Indexed: 01/01/2023]
Affiliation(s)
- A. G. Fragkaki
- Doping Control Laboratory of Athens; Olympic Athletic Center of Athens ‘Spyros Louis’; 37 Kifisias Avenue 15123 Maroussi Greece
| | - N. Kioukia-Fougia
- Doping Control Laboratory of Athens; Olympic Athletic Center of Athens ‘Spyros Louis’; 37 Kifisias Avenue 15123 Maroussi Greece
| | - P. Kiousi
- Doping Control Laboratory of Athens; Olympic Athletic Center of Athens ‘Spyros Louis’; 37 Kifisias Avenue 15123 Maroussi Greece
| | - M. Kioussi
- Laboratory of Pesticides Residues, Department of Pesticides Control and Phytopharmacy; Benaki Phytopathological Institute; 8 St. Delta str., 14561 Kifissia Athens Greece
- Laboratory of Analytical Chemistry, Department of Chemistry; University of Athens; 15771 Panepistimiopolis-Zographou Athens Greece
| | - M. Tsivou
- Doping Control Laboratory of Athens; Olympic Athletic Center of Athens ‘Spyros Louis’; 37 Kifisias Avenue 15123 Maroussi Greece
| |
Collapse
|
6
|
Cismesia AP, Bailey LS, Bell MR, Tesler LF, Polfer NC. Making Mass Spectrometry See the Light: The Promises and Challenges of Cryogenic Infrared Ion Spectroscopy as a Bioanalytical Technique. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:757-66. [PMID: 26975370 PMCID: PMC4841727 DOI: 10.1007/s13361-016-1366-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 05/31/2023]
Abstract
The detailed chemical information contained in the vibrational spectrum of a cryogenically cooled analyte ion would, in principle, make infrared (IR) ion spectroscopy a gold standard technique for molecular identification in mass spectrometry. Despite this immense potential, there are considerable challenges in both instrumentation and methodology to overcome before the technique is analytically useful. Here, we discuss the promise of IR ion spectroscopy for small molecule analysis in the context of metabolite identification. Experimental strategies to address sensitivity constraints, poor overall duty cycle, and speed of the experiment are intimately tied to the development of a mass-selective cryogenic trap. Therefore, the most likely avenues for success, in the authors' opinion, are presented here, alongside alternative approaches and some thoughts on data interpretation.
Collapse
Affiliation(s)
- Adam P Cismesia
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA
| | - Laura S Bailey
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA
| | - Matthew R Bell
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA
| | - Larry F Tesler
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA
| | - Nicolas C Polfer
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, USA.
| |
Collapse
|
7
|
|
8
|
Abstract
The abuse of unknown designer androgenic anabolic steroids (AAS) is considered to be an issue of significant importance, as AAS are the choice of doping preference according to World Anti-doping Agency statistics. In addition, unknown designer AAS are preferred since the World Anti-doping Agency mass spectrometric identification criteria cannot be applied to unknown molecules. Consequently, cheating athletes have a strong motive to use designer AAS in order to both achieve performance enhancement and to escape from testing positive in anti-doping tests. To face the problem, a synergy is required between the anti-doping analytical science and sports anti-doping regulations. This Review examines various aspects of the designer AAS. First, the structural modifications of the already known AAS to create new designer molecules are explained. A list of the designer synthetic and endogenous AAS is then presented. Second, we discuss progress in the detection of designer AAS using: mass spectrometry and bioassays; analytical data processing of the unknown designer AAS; metabolite synthesis; and, long-term storage of urine and blood samples. Finally, the introduction of regulations from sports authorities as preventive measures for long-term storage and reprocessing of samples, initially reported as negatives, is discussed.
Collapse
|
9
|
Abstract
Drug abuse occurs in all sports and at most levels of competition. Athletic life may lead to drug abuse for a number of reasons, including for performance enhancement, to self-treat otherwise untreated mental illness, and to deal with stressors, such as pressure to perform, injuries, physical pain, and retirement from sport. This review examines the history of doping in athletes, the effects of different classes of substances used for doping, side effects of doping, the role of anti-doping organizations, and treatment of affected athletes. Doping goes back to ancient times, prior to the development of organized sports. Performance-enhancing drugs have continued to evolve, with “advances” in doping strategies driven by improved drug testing detection methods and advances in scientific research that can lead to the discovery and use of substances that may later be banned. Many sports organizations have come to ban the use of performance-enhancing drugs and have very strict consequences for people caught using them. There is variable evidence for the performance-enhancing effects and side effects of the various substances that are used for doping. Drug abuse in athletes should be addressed with preventive measures, education, motivational interviewing, and, when indicated, pharmacologic interventions.
Collapse
Affiliation(s)
- Claudia L Reardon
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Shane Creado
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
10
|
Evaluation of horse urine sample preparation methods for metabolomics using LC coupled to HRMS. Bioanalysis 2014; 6:785-803. [DOI: 10.4155/bio.13.324] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Horse urine is the medium of choice for the implementation of metabolomic approaches aimed at improving horse doping control. However, drug analysis in this biofluid is a challenging task due to the presence of large amounts of interfering compounds. Methodology & Results: A comparative study of sample preparation has been conducted to evaluate five sample-preparation methods, namely acetonitrile precipitation, proteinase K hydrolysis, membrane filtration and sample dilution with water by factors of five and 20, for metabolome analysis using liquid chromatography coupled to high resolution mass spectrometry. Assessment was performed at both global and targeted levels, by using a few thousand features obtained from peak detection software, and internal standards and 100 annotated or identified metabolites. Conclusion: By considering the number of detected signals, their intensity and their detection repeatability, acetonitrile precipitation was selected as the most efficient sample-preparation method for the analysis of horse urine metabolome in liquid chromatography coupled to high resolution mass spectrometry conditions.
Collapse
|
11
|
Current status and bioanalytical challenges in the detection of unknown anabolic androgenic steroids in doping control analysis. Bioanalysis 2013; 5:2661-77. [DOI: 10.4155/bio.13.242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Androgenic anabolic steroids (AAS) are prohibited in sports due to their anabolic effects. Doping control laboratories usually face the screening of AAS misuse by target methods based on MS detection. Although these methods allow for the sensitive and specific detection of targeted compounds and metabolites, the rest remain undetectable. This fact opens a door for cheaters, since different AAS can be synthesized in order to evade doping control tests. This situation was evidenced in 2003 with the discovery of the designer steroid tetrahydrogestrinone. One decade after this discovery, the detection of unknown AAS still remains one of the main analytical challenges in the doping control field. In this manuscript, the current situation in the detection of unknown AAS is reviewed. Although important steps have been made in order to minimize this analytical problem and different analytical strategies have been proposed, there are still some drawbacks related to each approach.
Collapse
|
12
|
Abstract
Though we may still sing today, as did Pindar in his eighth Olympian Victory Ode, "… of no contest greater than Olympia, Mother of Games, gold-wreathed Olympia…", we must sadly admit that today, besides blatant over-commercialization, there is no more ominous threat to the Olympic games than doping. Drug-use methods are steadily becoming more sophisticated and ever harder to detect, increasingly demanding the use of complex analytical procedures of biotechnology and molecular medicine. Special emphasis is thus given to anabolic androgenic steroids, recombinant growth hormone and erythropoietin as well as to gene doping, the newly developed mode of hormones abuse which, for its detection, necessitates high-tech methodology but also multidisciplinary individual measures incorporating educational and psychological methods. In this Olympic year, the present review offers an update on the current technologically advanced endocrine methods of doping while outlining the latest procedures applied-including both the successes and pitfalls of proteomics and metabolomics-to detect doping while contributing to combating this scourge.
Collapse
Affiliation(s)
- Leonidas H Duntas
- Endocrine Unit, Evgenidion Hospital, University of Athens, 20 Papadiamantopoulou Street, 11528, Athens, Greece.
| | | |
Collapse
|
13
|
Thevis M, Kuuranne T, Geyer H, Schänzer W. Annual banned-substance review: analytical approaches in human sports drug testing. Drug Test Anal 2012; 5:1-19. [DOI: 10.1002/dta.1441] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 11/02/2012] [Indexed: 12/12/2022]
Affiliation(s)
| | - Tiia Kuuranne
- Doping Control Laboratory, United Medix Laboratories; Höyläämötie 14; 00380; Helsinki; Finland
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6; 50933; Cologne; Germany
| | - Wilhelm Schänzer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Am Sportpark Müngersdorf 6; 50933; Cologne; Germany
| |
Collapse
|
14
|
Dual-color bioluminescent bioreporter for forensic analysis: evidence of androgenic and anti-androgenic activity of illicit drugs. Anal Bioanal Chem 2012; 405:1035-45. [DOI: 10.1007/s00216-012-6416-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 12/19/2022]
|