1
|
Di Poto C, Tian X, Mellors S, Rosengren S, Issop S, Bonvini SJ, Hess S, Allman EL. A microfluidic chip-based capillary zone electrophoresis-mass spectrometry method for measuring adenosine 5'-Triphosphate and its similar nucleotide analogues. Anal Chim Acta 2024; 1298:342400. [PMID: 38462348 DOI: 10.1016/j.aca.2024.342400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Extracellular ATP is involved in disorders that cause inflammation of the airways and cough, thus limiting its release has therapeutic benefits. Standard luminescence-based ATP assays measure levels indirectly through enzyme degradation and do not provide a simultaneous readout for other nucleotide analogues. Conversely, mass spectrometry can provide direct ATP measurements, however, common RPLC and HILIC methods face issues because these molecules are unstable, metal-sensitive analytes which are often poorly retained. These difficulties have traditionally been overcome using passivation or ion-pairing chromatography, but these approaches can be problematic for LC systems. As a result, more effective analytical methods are needed. RESULTS Here, we introduce a new application that uses microfluidic chip-based capillary zone electrophoresis-mass spectrometry (μCZE-MS) to measure ATP and its analogues simultaneously in biofluids. The commercially available ZipChip Interface and a High-Resolution Bare-glass microchip (ZipChip, HRB, 908 Devices Inc.) coupled to a Thermo Scientific Tribrid Orbitrap, were successfully used to separate and detect various nucleotide standards, as well as ATP, ADP, AMP, and adenosine in plasma and BALF obtained from naïve Brown Norway rats. The findings demonstrate that this approach can rapidly and directly detect ATP and its related nucleotide analogues, while also highlighting the need to preserve these molecules in biofluids with chelators like EDTA. In addition, we demonstrate that this μCZE-MS method is also suitable for detecting a variety of metabolites, revealing additional potential future applications. SIGNIFICANCE This innovative μCZE-MS approach provides a robust new tool to directly measure ATP and other nucleotide analogues in biofluids. This can enable the study of eATP in human disease and potentially contribute to the creation of ATP-targeting therapies for airway illnesses.
Collapse
Affiliation(s)
- Cristina Di Poto
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Xiang Tian
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | | | - Sanna Rosengren
- Translational Science and Experimental Medicine, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sabina Issop
- Division of Airway Disease, Respiratory Pharmacology Group, NHLI, Imperial College London, London, SW7 2AZ, UK
| | - Sara J Bonvini
- In Vivo Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, London, SW7 2AZ, UK
| | - Sonja Hess
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Erik L Allman
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
2
|
Jia X, Yang X, Luo G, Liang Q. Recent progress of microfluidic technology for pharmaceutical analysis. J Pharm Biomed Anal 2021; 209:114534. [PMID: 34929566 DOI: 10.1016/j.jpba.2021.114534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
In recent years, the progress of microfluidic technology has provided new tools for pharmaceutical analysis and the proposal of pharm-lab-on-a-chip is appealing for its great potential to integrate pharmaceutical test and pharmacological test in a single chip system. Here, we summarize and highlight recent advances of chip-based principles, techniques and devices for pharmaceutical test and pharmacological/toxicological test focusing on the separation and analysis of drug molecules on a chip and the construction of pharmacological models on a chip as well as their demonstrative applications in quality control, drug screening and precision medicine. The trend and challenge of microfluidic technology for pharmaceutical analysis are also discussed and prospected. We hope this review would update the insight and development of pharm-lab-on-a-chip.
Collapse
Affiliation(s)
- Xiaomeng Jia
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Xiaoping Yang
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Guoan Luo
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| | - Qionglin Liang
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
3
|
Zhao Y, Tang M, Liu F, Li H, Wang H, Xu D. Highly Integrated Microfluidic Chip Coupled to Mass Spectrometry for Online Analysis of Residual Quinolones in Milk. Anal Chem 2019; 91:13418-13426. [DOI: 10.1021/acs.analchem.9b01844] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yaju Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Zhejiang Engineering Institute of Food Quality and Safety, School of Management and E-Business, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Minmin Tang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hui Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haiyan Wang
- Zhejiang Engineering Institute of Food Quality and Safety, School of Management and E-Business, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Kecskemeti A, Gaspar A. Particle-based liquid chromatographic separations in microfluidic devices - A review. Anal Chim Acta 2018; 1021:1-19. [DOI: 10.1016/j.aca.2018.01.064] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 01/06/2023]
|
5
|
Haghighi F, Talebpour Z, Nezhad AS. Towards fully integrated liquid chromatography on a chip: Evolution and evaluation. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Gilar M, McDonald TS, Gritti F, Roman GT, Johnson JS, Bunner B, Michienzi JD, Collamati RA, Murphy JP, Satpute DD, Bannon MP, DellaRovere D, Jencks RA, Dourdeville TA, Fadgen KE, Gerhardt GC. Chromatographic performance of microfluidic liquid chromatography devices: Experimental evaluation of straight versus serpentine packed channels. J Chromatogr A 2017; 1533:127-135. [PMID: 29249537 DOI: 10.1016/j.chroma.2017.12.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 10/18/2022]
Abstract
We prepared a series of planar titanium microfluidic (μLC) columns, each 100 mm long, with 0.15, 0.3 and 0.5 mm i.d.'s. The microfluidic columns were packed with 1.8 μm C18 sorbent and tested under isocratic and gradient conditions. The efficiency and peak capacity of these devices were monitored using a micro LC instrument with minimal extra column dispersion. Columns with serpentine channels were shown to perform worse than those with straight channels. The loss of efficiency and peak capacity was more prominent for wider i.d. columns, presumably due to on-column band broadening imparted by the so-called "race-track" effect. The loss of chromatographic performance was partially mitigated by tapering the turns (reduction in i.d. through the curved region). While good performance was obtained for 0.15 mm i.d. devices even without turn tapering, the performance of 0.3 mm i.d. columns could be brought on par with capillary LC devices by tapering down to 2/3 of the nominal channel width in the turn regions. The loss of performance was not fully compensated for in 0.5 mm devices even when tapering was employed; 30% loss in efficiency and 10% loss in peak capacity was observed. The experimental data for various devices were compared using the expected theoretical relationship between peak capacity Pc and efficiency N; (Pc-1) = N0.5 × const. While straight μLC columns showed the expected behavior, the devices with serpentine channels did not adhere to the plot. The results suggest that the loss of efficiency due to the turns is more pronounced than the corresponding loss of peak capacity.
Collapse
Affiliation(s)
- Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA.
| | | | - Fabrice Gritti
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | | | - Jay S Johnson
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Bernard Bunner
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | | | | | - Jim P Murphy
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | | | | | | | | | | | - Keith E Fadgen
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | | |
Collapse
|
7
|
Štěpánová S, Kašička V. Analysis of proteins and peptides by electromigration methods in microchips. J Sep Sci 2016; 40:228-250. [PMID: 27704694 DOI: 10.1002/jssc.201600962] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 11/07/2022]
Abstract
This review presents the developments and applications of microchip electromigration methods in the separation and analysis of peptides and proteins in the period 2011-mid-2016. The developments in sample preparation and preconcentration, microchannel material, and surface treatment are described. Separations by various microchip electromigration methods (zone electrophoresis in free and sieving media, affinity electrophoresis, isotachophoresis, isoelectric focusing, electrokinetic chromatography, and electrochromatography) are demonstrated. Advances in detection methods are reported and novel applications in the areas of proteomics and peptidomics, quality control of peptide and protein pharmaceuticals, analysis of proteins and peptides in biomatrices, and determination of physicochemical parameters are shown.
Collapse
Affiliation(s)
- Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
8
|
Gilar M, McDonald TS, Gritti F. Experimental evaluation of chromatographic performance of capillary and microfluidic columns with linear or curved channels. J Chromatogr A 2016; 1470:76-83. [DOI: 10.1016/j.chroma.2016.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/29/2016] [Accepted: 10/05/2016] [Indexed: 11/16/2022]
|
9
|
Morbioli GG, Mazzu-Nascimento T, Aquino A, Cervantes C, Carrilho E. Recombinant drugs-on-a-chip: The usage of capillary electrophoresis and trends in miniaturized systems – A review. Anal Chim Acta 2016; 935:44-57. [DOI: 10.1016/j.aca.2016.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 01/09/2023]
|
10
|
Challenges for the in vivo quantification of brain neuropeptides using microdialysis sampling and LC-MS. Bioanalysis 2016; 8:1965-85. [PMID: 27554986 DOI: 10.4155/bio-2016-0119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In recent years, neuropeptides and their receptors have received an increased interest in neuropharmacological research. Although these molecules are considered relatively small compared with proteins, their in vivo quantification using microdialysis is more challenging than for small molecules. Low microdialysis recoveries, aspecific adsorption and the presence of various multiply charged precursor ions during ESI-MS/MS detection hampers the in vivo quantification of these low abundant biomolecules. Every step in the workflow, from sampling until analysis, has to be optimized to enable the sensitive analysis of these compounds in microdialysates.
Collapse
|
11
|
Lotter C, Heiland JJ, Thurmann S, Mauritz L, Belder D. HPLC-MS with Glass Chips Featuring Monolithically Integrated Electrospray Emitters of Different Geometries. Anal Chem 2016; 88:2856-63. [DOI: 10.1021/acs.analchem.5b04583] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Carsten Lotter
- Institute
of Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Josef J. Heiland
- Institute
of Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Sebastian Thurmann
- Institute
of Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Laura Mauritz
- Institute
of Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Detlev Belder
- Institute
of Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
12
|
Zou H, Yue W, Yu WK, Liu D, Fong CC, Zhao J, Yang M. Microfluidic Platform for Studying Chemotaxis of Adhesive Cells Revealed a Gradient-Dependent Migration and Acceleration of Cancer Stem Cells. Anal Chem 2015; 87:7098-108. [PMID: 26087892 DOI: 10.1021/acs.analchem.5b00873] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent studies reveal that solid tumors consist of heterogeneous cells with distinct phenotypes and functions. However, it is unclear how different subtypes of cancer cells migrate under chemotaxis. Here, we developed a microfluidic device capable of generating multiple stable gradients, culturing cells on-chip, and monitoring single cell migratory behavior. The microfluidic platform was used to study gradient-induced chemotaxis of lung cancer stem cell (LCSC) and differentiated LCSC (dLCSC) in real time. Our results showed the dynamic and differential response of both LCSC and dLCSC to chemotaxis, which was regulated by the β-catenin dependent Wnt signaling pathway. The microfluidic analysis showed that LCSC and dLCSC from the same origin behaved differently in the same external stimuli, suggesting the importance of cancer cell heterogeneity. We also observed for the first time the acceleration of both LCSC and dLCSC during chemotaxis caused by increasing local concentration in different gradients, which could only be realized through the microfluidic approach. The capability to analyze single cell chemotaxis under spatially controlled conditions provides a novel analytical platform for the study of cellular microenvironments and cancer cell metastasis.
Collapse
Affiliation(s)
- Heng Zou
- †Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China.,‡Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institutes of City University of Hong Kong, Shenzhen, Guangdong, People's Republic of China
| | - Wanqing Yue
- †Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China.,‡Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institutes of City University of Hong Kong, Shenzhen, Guangdong, People's Republic of China
| | - Wai-Kin Yu
- †Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
| | - Dandan Liu
- †Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China
| | - Chi-Chun Fong
- †Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China.,‡Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institutes of City University of Hong Kong, Shenzhen, Guangdong, People's Republic of China
| | - Jianlong Zhao
- §State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Mengsu Yang
- †Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, People's Republic of China.,‡Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institutes of City University of Hong Kong, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
13
|
Practical applications of integrated microfluidics for peptide quantification. Bioanalysis 2015; 7:857-67. [DOI: 10.4155/bio.15.15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Increased pressure to obtain more, higher sensitivity data from less sample is especially critical for large peptides, whose already optimized LC–MS methods are heavily challenged by traditional ligand-binding assays. Results: Critical bioanalytical assays were adapted to integrated microscale LC to reduce sample volumes while increasing sensitivity. Assays for teriparatide, glucagon and human insulin and five analogs were transferred from 2.1 mm analytical scale LC to a 150 µm scale system. This resulted in a 15–30 fold overall improvement in sensitivity derived from increased signal to noise, three to six fold reduction in injection volumes, and a two to five fold reduction in sample consumption. Conclusion: Integrated microscale LC reduces sample consumption while enabling single picomolar quantification for therapeutic and endogenous peptides.
Collapse
|
14
|
Wide injection zone compression in gradient reversed-phase liquid chromatography. J Chromatogr A 2015; 1390:86-94. [PMID: 25748538 DOI: 10.1016/j.chroma.2015.02.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/14/2015] [Accepted: 02/18/2015] [Indexed: 11/21/2022]
Abstract
Chromatographic zone broadening is a common issue in microfluidic chromatography, where the sample volume introduced on column often exceeds the column void volume. To better understand the propagation of wide chromatographic zones on a separation device, a series of MS Excel spreadsheets were developed to simulate the process. To computationally simplify these simulations, we investigated the effects of injection related zone broadening and its gradient related zone compression by tracking only the movements of zone boundaries on column. The effects of sample volume, sample solvent, gradient slope, and column length on zone broadening were evaluated and compared to experiments performed on 0.32mm I.D. microfluidic columns. The repetitive injection method (RIM) was implemented to generate experimental chromatograms where large sample volume scenarios can be emulated by injecting two discrete small injection plugs spaced in time. A good match between predicted and experimental RIM chromatograms was observed. We discuss the performance of selected retention models on the accuracy of predictions and use the developed spreadsheets for illustration of gradient zone focusing for both small molecules and peptides.
Collapse
|
15
|
Gilar M, McDonald TS, Roman G, Johnson JS, Murphy JP, Jorgenson JW. Repetitive injection method: a tool for investigation of injection zone formation and its compression in microfluidic liquid chromatography. J Chromatogr A 2015; 1381:110-7. [PMID: 25604268 DOI: 10.1016/j.chroma.2015.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/24/2014] [Accepted: 01/01/2015] [Indexed: 11/18/2022]
Abstract
Sample introduction in microfluidic liquid chromatography often generates wide zones rather than peaks, especially when a large sample volume (relative to column volume) is injected. Formation of wide injection zones can be further amplified when the sample is dissolved in a strong eluent. In some cases sample breakthrough may occur, especially when the injection is performed into short trapping columns. To investigate the band formation and subsequent zone focusing under gradient elution in situations such as these, we developed the Repetitive Injection Method (RIM), based on the temporally resolved introduction of two discrete peaks to a column, mimicking both the leading and trailing edges of a larger, singly injected sample zone. Using titanium microfluidic 0.32 mm I.D. columns, the results of RIM experiments were practically identical to injection of a correspondingly larger single zone volume. It was also experimentally shown that zone width (spacing between two injected peaks) decreases during gradient elution. We utilized RIM experiments to investigate wide sample zones created by strong sample solvent, and subsequent gradient zone focusing for a series of compounds. This experimental work was compared with computationally simulated chromatograms. The success of sample focusing during injection and gradient elution depends not only on an analyte's absolute retention, but also on how rapidly the analyte's retention changes during the mobile phase gradient.
Collapse
Affiliation(s)
- Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA.
| | | | - Gregory Roman
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Jay S Johnson
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - James P Murphy
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - James W Jorgenson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Klepárník K. Recent advances in combination of capillary electrophoresis with mass spectrometry: Methodology and theory. Electrophoresis 2014; 36:159-78. [DOI: 10.1002/elps.201400392] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Karel Klepárník
- Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno Czech Republic
| |
Collapse
|