1
|
Stabilization and quantitative measurement of nicotinamide adenine dinucleotide in human whole blood using dried blood spot sampling. Anal Bioanal Chem 2023; 415:775-785. [PMID: 36504284 PMCID: PMC9741944 DOI: 10.1007/s00216-022-04469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a coenzyme essential for energy production. Recently, associations between NAD+ and aging-related diseases have been reported, and NAD+ precursors that increase NAD+ concentration in the body have been acknowledged as anti-aging supplements. However, there have been only a few studies on the link between aging or aging-related diseases and human blood NAD+ concentration because NAD+ and its precursors are unstable in blood and difficult to measure. Therefore, we aimed to construct a quantitative NAD+ measurement method that is simpler than the existing methods. The calibration standards of NAD+ showed good linearity (0.9936 to 0.9990) in the range of 0.25 to 200 μM, and the lower limit of quantification was 0.5 to 2 μM. We found that QIAcard FTA DMPK-B maintained NAD+ stability of 85% or more for at least 2 weeks at 4 °C and 1 week at room temperature using the dried blood spot method. Additionally, NAD+ stability in the blood extraction solution was more than 90% for 2 months. To our knowledge, there has been no report on a quantitative NAD+ measurement method in human whole blood that can be performed with as little as 5 μL of blood and can be easily implemented at both medical clinics and private homes. Our simple and convenient method has the potential to become the gold standard for NAD+ measurement in blood. It is expected to contribute to the acceleration of research on the correlation between aging or aging-related diseases and NAD+ concentration in human blood.
Collapse
|
2
|
Han Y, Li XL, Zhang M, Wang J, Zeng S, Min JZ. Potential use of a dried saliva spot (DSS) in therapeutic drug monitoring and disease diagnosis. J Pharm Anal 2022; 12:815-823. [PMID: 36605582 PMCID: PMC9805949 DOI: 10.1016/j.jpha.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 01/07/2023] Open
Abstract
In recent years, scientific researchers have increasingly become interested in noninvasive sampling methods for therapeutic drug monitoring and disease diagnosis. As a result, dried saliva spot (DSS), which is a sampling technique for collecting dried saliva samples, has been widely used as an alternative matrix to serum for the detection of target molecules. Coupling the DSS method with a highly sensitive detection instrument improves the efficiency of the preparation and analysis of biological samples. Furthermore, dried blood spots, dried plasma spots, and dried matrix spots, which are similar to those of the DSS method, are discussed. Compared with alternative biological fluids used in dried spot methods, including serum, tears, urine, and plasma, saliva has the advantage of convenience in terms of sample collection from children or persons with disabilities. This review aims to provide integral strategies and guidelines for dried spot methods to analyze biological samples by illustrating several dried spot methods. Herein, we summarize recent advancements in DSS methods from June 2014 to March 2021 and discuss the advantages and disadvantages of the key aspects of this method, including sample preparation and method validation. Finally, we outline the challenges and prospects of such methods in practical applications.
Collapse
Affiliation(s)
- Yu Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Xi-Ling Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Minghui Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Jing Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Corresponding author.
| | - Jun Zhe Min
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
- Corresponding author.
| |
Collapse
|
3
|
Green H, Tillmar A, Pettersson G, Montelius K. The use of FTA cards to acquire DNA profiles from postmortem cases. Int J Legal Med 2019; 133:1651-1657. [PMID: 30747256 DOI: 10.1007/s00414-019-02015-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/01/2019] [Indexed: 11/24/2022]
Abstract
Filter papers have been used for many years in different applications of molecular biology and have been proven to be a stable way to store DNA waiting to be analyzed. Sampling of DNA on FTA (Flinders Technology Associates) cards is convenient and cost effective compared to alternative approaches involving DNA extractions and storage of DNA extracts. FTA cards are analyzed at many forensic laboratories, and the way to perform direct genetic profiling on buccal swab cards has developed into an almost industrial process. The possibility to include postmortem (PM) samples into an FTA-based workflow would facilitate and speed up the genetic identification process compared to conventional methods, both on a regular basis and in a mass casualty event. In this study, we investigated if FTA cards may be used to carry tissue DNA from deceased and present a high-quality DNA profile from the individual in order to be useful for the identification process. The study also aimed to investigate if a specific body tissue would be preferable, and if decomposed tissue is suitable at all to put on an FTA card in order to obtain a DNA profile. We have compared the quality of the DNA profiles acquired from postmortem tissue on FTA cards, with the results acquired with conventional methods from reference bone/muscle samples from the same individual. Several types of tissues have been tested from different identification cases and scenarios. We concluded that tissue cells from inner organs are suitable to put on FTA cards, and that the obtained DNA profiles have the potential to serve as PM data for identification purposes. In cases including compromised samples, however, it is recommended to keep the tissue sample as a backup if further DNA has to be extracted.
Collapse
Affiliation(s)
- Henrik Green
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Artillerigatan 12, 587 58, Linköping, Sweden.,Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Andreas Tillmar
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Artillerigatan 12, 587 58, Linköping, Sweden.,Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Gisela Pettersson
- Department of Forensic Medicine, Division of Forensic Medicine Umeå, National Board of Forensic Medicine, Analysvägen, 901 85, UMEÅ, Sweden
| | - Kerstin Montelius
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Artillerigatan 12, 587 58, Linköping, Sweden.
| |
Collapse
|
4
|
Lim MD. Dried Blood Spots for Global Health Diagnostics and Surveillance: Opportunities and Challenges. Am J Trop Med Hyg 2018; 99:256-265. [PMID: 29968557 PMCID: PMC6090344 DOI: 10.4269/ajtmh.17-0889] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/02/2018] [Indexed: 12/28/2022] Open
Abstract
There is increasing interest in using dried blood spot (DBS) cards to extend the reach of global health and disease surveillance programs to hard-to-reach populations. Conceptually, DBS offers a cost-effective solution for multiple use cases by simplifying logistics for collecting, preserving, and transporting blood specimens in settings with minimal infrastructure. This review describes methods to determine both the reliability of DBS-based bioanalysis for a defined use case and the optimal conditions that minimize pre-analytical sources of data variability. Examples by the newborn screening, drug development, and global health communities are provided in this review of published literature. Sources of variability are linked in most cases, emphasizing the importance of field-to-laboratory standard operating procedures that are evidence based and consider both stability and efficiency of recovery for a specified analyte in defining the type of DBS card, accessories, handling procedures, and storage conditions. Also included in this review are reports where DBS was determined to not be feasible because of technology limitations or physiological properties of a targeted analyte.
Collapse
Affiliation(s)
- Mark D. Lim
- Global Health Division, Bill & Melinda Gates Foundation, Seattle, Washington
| |
Collapse
|
5
|
Ghantous A, Hernandez-Vargas H, Herceg Z. DNA Methylation Analysis from Blood Spots: Increasing Yield and Quality for Genome-Wide and Locus-Specific Methylation Analysis. Methods Mol Biol 2018; 1708:605-619. [PMID: 29224166 DOI: 10.1007/978-1-4939-7481-8_31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Blood represents an easily accessible human tissue for numerous research and clinical applications, including surrogate roles for biomarkers of other tissues. Dried blood spots (DBS) are space- and cost-efficient storage forms of blood while stably retaining many of its chemical constituents. Consequently, neonatal DBS are routinely collected in many countries, and their biobanks represent gold mines for research. However, the utility of DBS is restricted by the limited amount and quality of extractable biomolecules (including DNA), especially for genome-wide profiling. In particular, DNA methylome analysis in DBS has proven to be technically challenging, mainly due to the requirement for stringent preprocessing, such as bisulfite conversion. Moreover, DNA amplification, required to increase its yield, often leads to a bias in the analysis, particularly in methylome profiles. Thus, it is important to develop methodologies that maximize both the yield and quality of DNA from DBS for downstream analyses. Using a combination of in-house-derived and modified commercial extraction methods, we developed two robust protocols that produced increased DNA yield and quality from DBS. Though both protocols are more efficient relative to other published methods, one protocol yields less DNA compared to the other, but shows improved 260/280 spectrophotometric ratios, which are useful for sample quality assessment. Both protocols consist of two sequential phases, each involving several critical steps. Phase I comprises blood extraction off the filter papers, cell lysis, and protein digestion. Phase II involves DNA precipitation, purification, and elution. Results from subsequent locus-specific and genome-wide DNA methylation analyses demonstrate the high quality, reproducibility, and consistency of the data. This work may prove useful to meet the increased demand for research on DBS, particularly with a focus on the epigenetic origins of human diseases and newborn screening programs.
Collapse
Affiliation(s)
- Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 rue Albert-Thomas, 69008, Lyon, France
| | - Hector Hernandez-Vargas
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 rue Albert-Thomas, 69008, Lyon, France
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 rue Albert-Thomas, 69008, Lyon, France.
| |
Collapse
|
6
|
Effect of time on recovery of plasma microsamples for the quantitative determination of vancomycin. Bioanalysis 2016; 8:2235-2242. [PMID: 27665940 DOI: 10.4155/bio-2016-0159] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The reliability of extraction recovery of an analyte in bioanalysis is fundamentally important for downstream analytical testing. For dried format microsamples, if the recovery changes with time the concentration in clinical samples, derived from calibration standards and alongside quality control samples prepared following different drying protocols, may not reflect the true result. The purpose of this paper was therefore to evaluate changes to extraction recovery across time for one analyte, the glycopeptide antibiotic vancomycin, in plasma using two dried microsampling formats, dried plasma spots and volumetric absorptive microsampling.
Collapse
|
7
|
Leuthold LA, Heudi O, Déglon J, Raccuglia M, Augsburger M, Picard F, Kretz O, Thomas A. New microfluidic-based sampling procedure for overcoming the hematocrit problem associated with dried blood spot analysis. Anal Chem 2015; 87:2068-71. [PMID: 25607538 DOI: 10.1021/ac503931g] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hematocrit (Hct) is one of the most critical issues associated with the bioanalytical methods used for dried blood spot (DBS) sample analysis. Because Hct determines the viscosity of blood, it may affect the spreading of blood onto the filter paper. Hence, accurate quantitative data can only be obtained if the size of the paper filter extracted contains a fixed blood volume. We describe for the first time a microfluidic-based sampling procedure to enable accurate blood volume collection on commercially available DBS cards. The system allows the collection of a controlled volume of blood (e.g., 5 or 10 μL) within several seconds. Reproducibility of the sampling volume was examined in vivo on capillary blood by quantifying caffeine and paraxanthine on 5 different extracted DBS spots at two different time points and in vitro with a test compound, Mavoglurant, on 10 different spots at two Hct levels. Entire spots were extracted. In addition, the accuracy and precision (n = 3) data for the Mavoglurant quantitation in blood with Hct levels between 26% and 62% were evaluated. The interspot precision data were below 9.0%, which was equivalent to that of a manually spotted volume with a pipet. No Hct effect was observed in the quantitative results obtained for Hct levels from 26% to 62%. These data indicate that our microfluidic-based sampling procedure is accurate and precise and that the analysis of Mavoglurant is not affected by the Hct values. This provides a simple procedure for DBS sampling with a fixed volume of capillary blood, which could eliminate the recurrent Hct issue linked to DBS sample analysis.
Collapse
Affiliation(s)
- Luc Alexis Leuthold
- Novartis Institutes for Biomedical Research , DMPK/Bioanalytics, Novartis Campus, 4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Wilhelm AJ, den Burger JCG, Swart EL. Therapeutic drug monitoring by dried blood spot: progress to date and future directions. Clin Pharmacokinet 2014; 53:961-73. [PMID: 25204403 PMCID: PMC4213377 DOI: 10.1007/s40262-014-0177-7] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article discusses dried blood spot (DBS) sampling in therapeutic drug monitoring (TDM). The most important advantages of DBS sampling in TDM are the minimally invasive procedure of a finger prick (home sampling), the small volume (children), and the stability of the analyte. Many assays in DBS have been reported in the literature over the previous 5 years. These assays and their analytical techniques are reviewed here. Factors that may influence the accuracy and reproducibility of DBS methods are also discussed. Important issues are the correlation with plasma/serum concentrations and the influence of hematocrit on spot size and recovery. The different substrate materials are considered. DBS sampling can be a valid alternative to conventional venous sampling. However, patient correlation studies are indispensable to prove this. Promising developments are dried plasma spots using membrane and hematocrit correction using the potassium concentration.
Collapse
Affiliation(s)
- Abraham J Wilhelm
- Department of Clinical Pharmacology and Pharmacy, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands,
| | | | | |
Collapse
|
9
|
Multiplexed extraction and quantitative analysis of pharmaceuticals from DBS samples using digital microfluidics. Bioanalysis 2014; 6:307-18. [DOI: 10.4155/bio.13.311] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background: Dried blood spot (DBS) sampling is emerging as a valuable technique in a variety of fields, including clinical and preclinical testing of pharmaceuticals. Despite this popularity, current DBS sampling and analysis processes remain laborious and time consuming. Digital microfluidics, a microscale liquid-handling technique, characterized by the manipulation of discrete droplets on open electrode arrays, offers a potential solution to these problems. Results: We report a new digital microfluidic method for multiplexed extraction and analysis of pharmaceuticals in DBS samples. In the new method, four DBS samples are extracted in microliter-sized droplets containing internal standard, and the extract is delivered to dedicated nanoelectrospray ionization emitters for direct analysis by tandem mass spectometry and selected reaction monitoring. Conclusion: The new method allows for an order of magnitude reduction in processing time and approximately three-times reduction in extraction solvent relative to conventional techniques, while maintaining acceptable analytical performance for most drugs tested.
Collapse
|