1
|
Thakur A, Tan Z, Kameyama T, El-Khateeb E, Nagpal S, Malone S, Jamwal R, Nwabufo CK. Bioanalytical strategies in drug discovery and development. Drug Metab Rev 2021; 53:434-458. [PMID: 34310243 DOI: 10.1080/03602532.2021.1959606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A reliable, rapid, and effective bioanalytical method is essential for the determination of the pharmacokinetic, pharmacodynamic, and toxicokinetic parameters that inform the safety and efficacy profile of investigational drugs. The overall goal of bioanalytical method development is to elucidate the procedure and operating conditions under which a method can sufficiently extract, qualify, and/or quantify the analyte(s) of interest and/or their metabolites for the intended purpose. Given the difference in the physicochemical properties of small and large molecule drugs, different strategies need to be adopted for the development of an effective and efficient bioanalytical method. Herein, we provide an overview of different sample preparation strategies, analytical platforms, as well as procedures for achieving high throughput for bioanalysis of small and large molecule drugs.
Collapse
Affiliation(s)
- Aarzoo Thakur
- Innovations in Food and Chemical Safety, Agency for Science, Technology, and Research, Singapore, Singapore.,Skin Research Institute of Singapore, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Zhiyuan Tan
- Department of Early Clinical Development, dMed-Clinipace, Shanghai, China
| | - Tsubasa Kameyama
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Eman El-Khateeb
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK.,Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Shakti Nagpal
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | | | - Rohitash Jamwal
- College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | | |
Collapse
|
2
|
Bults P, Sonesson A, Knutsson M, Bischoff R, van de Merbel NC. Intact protein quantification in biological samples by liquid chromatography - high-resolution mass spectrometry: somatropin in rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1144:122079. [PMID: 32247186 DOI: 10.1016/j.jchromb.2020.122079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 01/28/2023]
Abstract
The quantitative determination of intact proteins in biological samples by LC with high-resolution MS detection can be a useful alternative to ligand-binding assays or LC-MS-based quantification of a surrogate peptide after protein digestion. The 22-kDa biopharmaceutical protein somatropin (recombinant human growth hormone) was quantified down to 10 ng/mL (0.45 nM) in 75 μL of rat plasma by the combination of an immunocapture step using an anti-somatropin antibody and LC-MS on a quadrupole-time of flight instrument. Accuracy and precision of the method as well as its selectivity and sensitivity did not depend on the width of the mass extraction window nor on whether only one or a summation of multiple charge states of the protein analyte were used as the detection response. Quantification based on deconvoluted mass spectra showed equally acceptable method performance but with a less favorable lower limit of quantification of 30 ng/mL. Concentrations in plasma after dosing of somatropin to rats correlated well for the deconvolution approach and the quantification based on the summation of the response of the four most intense charge states (14+ to 17+) of somatropin.
Collapse
Affiliation(s)
- Peter Bults
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; Bioanalytical Laboratory, PRA Health Sciences, Amerikaweg 18, 9407 TK Assen, the Netherlands
| | - Anders Sonesson
- Ferring Pharmaceuticals, Kay Fiskers Plads 11, DK-2300 Copenhagen, Denmark
| | - Magnus Knutsson
- Ferring Pharmaceuticals, Kay Fiskers Plads 11, DK-2300 Copenhagen, Denmark
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Nico C van de Merbel
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; Bioanalytical Laboratory, PRA Health Sciences, Amerikaweg 18, 9407 TK Assen, the Netherlands.
| |
Collapse
|
3
|
Protein quantification by LC–MS: a decade of progress through the pages of Bioanalysis. Bioanalysis 2019; 11:629-644. [DOI: 10.4155/bio-2019-0032] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the past 10 years, there has been a remarkable increase in the use of LC–MS for the quantitative determination of proteins, and this technique can now be considered an established bioanalytical platform for the quantification of macromolecular drugs and biomarkers, next to the traditional ligand-binding assays. Many researchers have contributed to the field and helped improve both the technical possibilities of LC–MS-based workflows and our understanding of the meaning of the results that are obtained. As a tribute to Bioanalysis, which has published many important contributions, this report gives a high-level overview of the most important trends in the field of protein LC–MS, as published in this journal since its inauguration a decade ago. It describes the major technical developments with regard to sample handling, separation and MS detection of both digested and intact protein analysis. In addition, the relevance of the complex structure and in vivo behavior of proteins is discussed and the effect of protein–protein interactions, biotransformation and the occurrence of isoforms on the analytical result is addressed.
Collapse
|
4
|
Kandregula CAB, Smilin Bell Aseervatham G, Bentley GT, Kandasamy R. Alpha-1 antitrypsin: Associated diseases and therapeutic uses. Clin Chim Acta 2016; 459:109-116. [PMID: 27259467 DOI: 10.1016/j.cca.2016.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Chaya A Babu Kandregula
- Laboratory of Pulmonary Medicine, National Facility for Drug Development for Academia, Pharmaceutical & Allied Industries, Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational REsearch (CENTRE), Anna University - BIT Campus, Tiruchirappalli, Tamil Nadu 620024, India
| | - G Smilin Bell Aseervatham
- Laboratory of Pulmonary Medicine, National Facility for Drug Development for Academia, Pharmaceutical & Allied Industries, Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational REsearch (CENTRE), Anna University - BIT Campus, Tiruchirappalli, Tamil Nadu 620024, India
| | - Gary T Bentley
- Department of Internal Medicine, Morsani College of Medicine, Tampa, FL 33612, USA
| | - Ruckmani Kandasamy
- Laboratory of Pulmonary Medicine, National Facility for Drug Development for Academia, Pharmaceutical & Allied Industries, Department of Pharmaceutical Technology, Centre for Excellence in Nanobio Translational REsearch (CENTRE), Anna University - BIT Campus, Tiruchirappalli, Tamil Nadu 620024, India.
| |
Collapse
|
5
|
Special focus issue: Bioanalysis of large molecules by LC-MS. Bioanalysis 2015; 6:1727-9. [PMID: 25157478 DOI: 10.4155/bio.14.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
6
|
Bults P, van de Merbel NC, Bischoff R. Quantification of biopharmaceuticals and biomarkers in complex biological matrices: a comparison of liquid chromatography coupled to tandem mass spectrometry and ligand binding assays. Expert Rev Proteomics 2015; 12:355-74. [DOI: 10.1586/14789450.2015.1050384] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|