1
|
|
2
|
Design and application of molecularly imprinted Polypyrrole/Platinum nanoparticles modified platinum sensor for the electrochemical detection of Vardenafil. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Target triggered cleavage effect of DNAzyme: Relying on Pd-Pt alloys functionalized Fe-MOFs for amplified detection of Pb2+. Biosens Bioelectron 2018; 101:297-303. [DOI: 10.1016/j.bios.2017.10.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/15/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022]
|
4
|
Wan Y, Xu L, Zhuo N, Lu X. A novel DNA sensor based on C 60NPs-PAMAM-PtPNPs to detect VKORC1 gene for guiding rational clinical therapy with warfarin. Anal Chim Acta 2018; 1009:39-47. [PMID: 29422130 DOI: 10.1016/j.aca.2018.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/24/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022]
Abstract
Reports have indicated that warfarin is the most widely prescribed anticoagulant. However, traditionally prescribed doses for each patient may be too low or too high. The therapeutic effect is often hindered by a lack of evidence-based medical information. Herein, our aim is to provide this information. To accomplish this challenge, we report the development of a novel assay based on biotinylated tetrahedral DNA as a capture probe and fullerene (C60)-based nanomaterial as a redox probe using an ultrasensitivity assay with the Vitamin K epoxide reductase complex, subunit 1 (VKORC1). Platinum porous nanoparticles (PtPNPs) were modified on amino-terminated polyamidoamine (PAMAM)-functionalized C60 nanoparticles (C60NPs). The resultant C60NPs-PAMAM-PtPNPs were used as a redox probe. In this design, C60 exhibited excellent redox activity that was triggered by tetraoctylammonium bromide (TOAB). To improve the immobilization of the tetrahedral DNA capture probe, avidin was introduced during the fabrication of the biosensor because it can provide more active sites for the immobilization capture probe. The free-standing probe on top of the tetrahedral DNA served as a receptor to hybridize with target DNA directly. Different pulse voltammetry (DPV) was applied to record the electrochemical signals, which increased linearly with the target DNA. Under optimal conditions, the prepared biosensor showed a wide linear relationship, from 1 pM to 10 nM, with detection limits of 0.33 pM. This strategy demonstrates a new avenue for the determination of tumour-related mutated nucleotides in biosamples.
Collapse
Affiliation(s)
- Yongxian Wan
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lili Xu
- Department of Rehabilitation Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Naiqiang Zhuo
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaobo Lu
- Department of Orthopedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Tang Z, Ma Z. Multiple functional strategies for amplifying sensitivity of amperometric immunoassay for tumor markers: A review. Biosens Bioelectron 2017; 98:100-112. [DOI: 10.1016/j.bios.2017.06.041] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 02/07/2023]
|
6
|
Zhang C, He J, Zhang Y, Chen J, Zhao Y, Niu Y, Yu C. Cerium dioxide-doped carboxyl fullerene as novel nanoprobe and catalyst in electrochemical biosensor for amperometric detection of the CYP2C19*2 allele in human serum. Biosens Bioelectron 2017; 102:94-100. [PMID: 29127901 DOI: 10.1016/j.bios.2017.11.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/10/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022]
Abstract
The disposition dose of clopidogrel is different in CYP2C19*2 gene carriers and non-carriers. High-dose clopidogrel has been recommended to overcome a low-responsiveness to clopidogrel in patients with the CYP2C19*2 gene. To guide the choice of clopidogrel dosage and catalyse a development in the field of personalized therapy, we developed an ultrasensitive electrochemical biosensor to detect CYP2C19*2 gene. We constructed a novel assay based on cerium dioxide (CeO2)-functionalized carboxyl fullerene (c-C60) supported by Pt nanoparticles (c-C60/CeO2/PtNPs) for signal amplification. Au nanoparticles @ Fe-MIL-88NH2 (AuNPs@Fe-MOFs) were synthesized by one-step method as the support platform to enhance the conductivity and immobilize more biotin-modified capture probe (bio-CP) through the superior affinity and specificity between streptavidin and biotin. c-C60/CeO2/PtNPs were labeled with signal probe to form the signal label. After the sandwich reaction of CYP2C19*2 gene between capture probe and the signal label, a distinguishing electrochemical signal from the catalysis of H2O2 by signal label would be observed. Amperometry was applied to record electrochemical signals. Under optimized conditions, the approach showed a good linear dependence between current and the logarithm of CYP2C19*2 gene concentrations in the range of 1 fM to 50nM with a low detection limit of 0.33fM (S/N = 3). The proposed method showed good specificity to target DNA compared with possible interfering substances. More importantly, the fabricated biosensor achieved accurate quantitative detection of CYP2C19*2 gene in human serum samples demonstrated by excellent correlations with standard DNA sequencing and provided a promising strategy for electrochemical biosensor detection of other gene mutations.
Collapse
Affiliation(s)
- Chengli Zhang
- College of Pharmacy, Institute of Life Science and School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Junlin He
- College of Pharmacy, Institute of Life Science and School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Yuchan Zhang
- College of Pharmacy, Institute of Life Science and School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Jun Chen
- College of Pharmacy, Institute of Life Science and School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Yilin Zhao
- College of Pharmacy, Institute of Life Science and School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Yazhen Niu
- College of Pharmacy, Institute of Life Science and School of Public Health, Chongqing Medical University, Chongqing 400016, PR China
| | - Chao Yu
- College of Pharmacy, Institute of Life Science and School of Public Health, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
7
|
Amperometric immunoassay for the tumor marker neuron-specific enolase using a glassy carbon electrode modified with a nanocomposite consisting of polyresorcinol and of gold and platinum nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2287-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Wang H, Gao X, Ma Z. Multifunctional substrate of label-free electrochemical immunosensor for ultrasensitive detection of cytokeratins antigen 21-1. Sci Rep 2017; 7:1023. [PMID: 28432339 PMCID: PMC5430772 DOI: 10.1038/s41598-017-01250-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/27/2017] [Indexed: 12/11/2022] Open
Abstract
Poly(thionine)-Au, a novel multifunctional substrate with excellent redox signal, enzyme-like activity, and easy antibody immobilisation, was synthesised using HAuCl4 as the oxidising agent and thionine as the monomer. The prepared poly(thionine)-Au composite exhibited an admirable electrochemical redox signal at -0.15 V and excellent H2O2 catalytic ability. In addition, gold nanoparticles in this composite were found to directly immobilise antibodies and further improve conductivity. In addition, a label-free electrochemical immunosensor was developed using poly(thionine)-Au as the sensing substrate for ultrasensitive detection of cytokeratin antigen 21-1 (CYFRA 21-1), an immunoassay found in human serum. The prepared immunosensor showed a wide liner range from 100 ng mL-1 to 10 fg mL-1 and an ultralow detection limit of 4.6 fg mL-1 (the ratio of signal to noise (S/N) = 3). Additionally, this method was used to analyse human serum samples and yielded results consistency with those of ELISA, implying its potential application in clinical research. The poly(thionine)-Au composite can be easily extended to other polymer-based nanocomposites, which is significant for other electrochemical immunoassays.
Collapse
Affiliation(s)
- Huiqiang Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Xin Gao
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
9
|
Chen J, Yu C, Zhao Y, Niu Y, Zhang L, Yu Y, Wu J, He J. A novel non-invasive detection method for the FGFR3 gene mutation in maternal plasma for a fetal achondroplasia diagnosis based on signal amplification by hemin-MOFs/PtNPs. Biosens Bioelectron 2016; 91:892-899. [PMID: 27836589 DOI: 10.1016/j.bios.2016.10.067] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/12/2016] [Accepted: 10/25/2016] [Indexed: 11/16/2022]
Abstract
The small amount of cell-free fetal DNA (cffDNA) can be a useful biomarker for early non-invasive prenatal diagnosis (NIPD) of achondroplasia. In this study, a novel non-invasive electrochemical DNA sensor for ultrasensitive detecting FGFR3 mutation gene, a pathogenic gene of achondroplasia, based on biocatalytic signal materials and the biotin-streptavidin system are presented. Notably encapsulation of hemin in metal-organic frameworks-based materials (hemin-MOFs) and platinum nanoparticles (PtNPs) were used to prepare hemin-MOFs/PtNPs composites via a one-beaker-one-step reduction. We utilized hemin-MOFs/PtNPs for signal amplification because the promising hemin-MOFs/PtNPs nanomaterial has remarkable ability of catalyze H2O2 as well as excellent conductivity. To further amplify the electrochemical signal, reduced graphene oxide-tetraethylene pentamine (rGO-TEPA), gold nanoparticles and streptavidin were selected for modification of the electrode to enhance the conductivity and immobilize more biotin-modified capture probe (Bio-CP) through the high specificity and superior affinity between streptavidin and biotin. The electrochemical signal was primarily derived from the synergistic catalysis of H2O2 by hemin and PtNPs and recorded by Chronoamperometry. Under the optimal conditions, this newly designed biosensor exhibited sensitive detection of FGFR3 from 0.1fM to 1nM with a low detection limit of 0.033fM (S/N=3). We proposed that this ultrasensitive biosensor is useful for the early non-invasive prenatal diagnosis of achondroplasia.
Collapse
Affiliation(s)
- Jun Chen
- School of Public Health and Management, College of Pharmacy and Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Chao Yu
- School of Public Health and Management, College of Pharmacy and Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Yilin Zhao
- School of Public Health and Management, College of Pharmacy and Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Yazhen Niu
- School of Public Health and Management, College of Pharmacy and Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Lei Zhang
- School of Public Health and Management, College of Pharmacy and Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Yujie Yu
- School of Public Health and Management, College of Pharmacy and Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Wu
- School of Public Health and Management, College of Pharmacy and Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Junlin He
- School of Public Health and Management, College of Pharmacy and Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
10
|
Wang L, Shan J, Feng F, Ma Z. Novel redox species polyaniline derivative-Au/Pt as sensing platform for label-free electrochemical immunoassay of carbohydrate antigen 199. Anal Chim Acta 2016; 911:108-113. [PMID: 26893092 DOI: 10.1016/j.aca.2016.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/27/2015] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
Abstract
A novel electrochemical redox-active nanocomposite was synthesized by a one-pot method using N,N'-diphenyl-p-phenylediamine as monomer, and HAuCl4 and K2PtCl4 as co-oxidizing agents. The as-prepared poly(N,N'-diphenyl-p-phenylediamine)-Au/Pt exhibited admirable electrochemical redox activity at 0.15 V, excellent H2O2 electrocatalytic ability and favorable electron transfer ability. Based on these, the evaluation of the composite as sensing substrate for label-free electrochemical immunosensing to the sensitive detection of carbohydrate antigen 199 was described. This technique proved to be a prospective detection tool with a wide liner range from 0.001 U mL(-1) to 40 U mL(-1), and a low detection limit of 2.3 × 10(-4) U mL(-1) (S/N = 3). In addition, this method was used for the analysis of human serum sample, and good agreement was obtained between the values and those of enzyme-linked immunosorbent assay, implying the potential application in clinical research. Importantly, the strategy of the present substrate could be extended to other polymer-based nanocomposites such as polypyrrole derivatives or polythiophene derivatives, and this could be of great significance for the electrochemical immunoassay.
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Chemistry, Capital Normal University, 100048, Beijing, China
| | - Jiao Shan
- Department of Chemistry, Capital Normal University, 100048, Beijing, China
| | - Feng Feng
- Department of Chemistry, Capital Normal University, 100048, Beijing, China
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, 100048, Beijing, China.
| |
Collapse
|
11
|
Wang L, Liu N, Ma Z. Novel gold-decorated polyaniline derivatives as redox-active species for simultaneous detection of three biomarkers of lung cancer. J Mater Chem B 2015; 3:2867-2872. [DOI: 10.1039/c5tb00001g] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Novel redox-active species including gold-poly(o-aminophenol) and gold-poly(p-phenylenediamine) were synthesized and applied for the electrochemical immunoassay of three tumor biomarkers.
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Chemistry
- Capital Normal University
- Beijing
- China
| | - Na Liu
- Department of Chemistry
- Capital Normal University
- Beijing
- China
- College of Life Science
| | - Zhanfang Ma
- Department of Chemistry
- Capital Normal University
- Beijing
- China
| |
Collapse
|
12
|
Porous platinum nanoparticles and PdPt nanocages for use in an ultrasensitive immunoelectrode for the simultaneous determination of the tumor markers CEA and AFP. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1435-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|