1
|
Xiao HM, Yang X, Zheng F, Tshepelevitsh S, Wang X, Yao XJ, Leito I, Feng YQ. Quantitative analysis of the relationship of derivatization reagents and detection sensitivity of electrospray ionization-triple quadrupole tandem mass spectrometry: Hydrazines as prototypes. Anal Chim Acta 2021; 1158:338402. [PMID: 33863407 DOI: 10.1016/j.aca.2021.338402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/21/2021] [Accepted: 03/07/2021] [Indexed: 11/30/2022]
Abstract
Chemical derivatization-assisted electrospray ionization-triple quadrupole mass spectrometry (ESI-QqQ-MS) has become an efficient tool for the quantification of low-molecular-weight molecules. Many studies found that the derivatives of the same analytes derivatized by different derivatization reagents with the same reaction group had different detection sensitivity, even under the same conditions of electrospray ionization-mass spectrometry (ESI-MS). This phenomenon was suggested to be caused by the different modifying groups in the derivatization reagents. However, there is still a lack of systematic study on how modifying groups in the derivatization reagents affect the detection sensitivity of their corresponding derivatives of analytes, especially theoretical investigations. In this study, we employed a quantitative structure-activity relationship (QSAR) modeling approach to explore the relationship between modifying group structures and the detection sensitivity of derivatization reagents and their derivatives during ESI-MS detection. A total of 110 derivatization reagents of the hydrazine family and their hexanal derivatives (substituted hydrazones) were selected as the prototypes to construct QSAR models. The established models suggested that several molecular descriptors, related to hydrophobicity, electronegativity, and molecular shape, were related to the detection sensitivity of hexanal derivatives induced by different modifying groups in the derivatization reagents. Besides, we found that the detection sensitivity of compounds detected in selected ion mode (SIM) showed a positive correlation with that obtained in multiple reaction monitoring mode (MRM), and the ionization efficiency was the key factor on the detection sensitivity in both modes.
Collapse
Affiliation(s)
- Hua-Ming Xiao
- Department of Chemistry, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, PR China
| | - Xing Yang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou, 73000, PR China
| | - Feng Zheng
- Department of Chemistry, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, PR China
| | - Sofja Tshepelevitsh
- Institute of Chemistry, University of Tartu, 14a Ravila Street, Tartu, 50411, Estonia
| | - Xian Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, PR China.
| | - Xiao-Jun Yao
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou, 73000, PR China
| | - Ivo Leito
- Institute of Chemistry, University of Tartu, 14a Ravila Street, Tartu, 50411, Estonia
| | - Yu-Qi Feng
- Department of Chemistry, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
2
|
David V, Moldoveanu SC, Galaon T. Derivatization procedures and their analytical performances for HPLC determination in bioanalysis. Biomed Chromatogr 2020; 35:e5008. [PMID: 33084080 DOI: 10.1002/bmc.5008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Derivatization, or chemical structure modification, is often used in bioanalysis performed by liquid chromatography technique in order to enhance detectability or to improve the chromatographic performance for the target analytes. The derivatization process is discussed according to the analytical procedure used to achieve the reaction between the reagent and the target compounds (containing hydroxyl, thiol, amino, carbonyl and carboxyl as the main functional groups involved in derivatization). Important procedures for derivatization used in bioanalysis are in situ or based on extraction processes (liquid-liquid, solid-phase and related techniques) applied to the biomatrix. In the review, chiral, isotope-labeling, hydrophobicity-tailored and post-column derivatizations are also included, based on representative publications in the literature during the last two decades. Examples of derivatization reagents and brief reaction conditions are included, together with some bioanalytical applications and performances (chromatographic conditions, detection limit, stability and sample biomatrix).
Collapse
Affiliation(s)
- Victor David
- Faculty of Chemistry, Department of Analytical Chemistry, University of Bucharest, Bucharest, Romania
| | | | - Toma Galaon
- National Research and Development Institute for Industrial Ecology - ECOIND, Bucharest-6, Romania
| |
Collapse
|
3
|
van Faassen M, Bischoff R, Eijkelenkamp K, de Jong WHA, van der Ley CP, Kema IP. In Matrix Derivatization Combined with LC-MS/MS Results in Ultrasensitive Quantification of Plasma Free Metanephrines and Catecholamines. Anal Chem 2020; 92:9072-9078. [PMID: 32484659 PMCID: PMC7349590 DOI: 10.1021/acs.analchem.0c01263] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Abstract
Plasma-free metanephrines and catecholamines are essential markers in the biochemical diagnosis and follow-up of neuroendocrine tumors and inborn errors of metabolism. However, their low circulating concentrations (in the nanomolar range) and poor fragmentation characteristics hinder facile simultaneous quantification by liquid chromatography and tandem mass spectrometry (LC-MS/MS). Here, we present a sensitive and simple matrix derivatization procedure using propionic anhydride that enables simultaneous quantification of unconjugated l-DOPA, catecholamines, and metanephrines in plasma by LC-MS/MS. Dilution of propionic anhydride 1:4 (v/v) in acetonitrile in combination with 50 μL of plasma resulted in the highest mass spectrometric response. In plasma, derivatization resulted in stable derivatives and increased sensitivity by a factor of 4-30 compared with a previous LC-MS/MS method for measuring plasma metanephrines in our laboratory. Furthermore, propionylation increased specificity, especially for 3-methoxytyramine, by preventing interference from antihypertensive medication (β-blockers). The method was validated according to international guidelines and correlated with a hydrophilic interaction LC-MS/MS method for measuring plasma metanephrines (R2 > 0.99) and high-performance liquid chromatography with an electrochemical detection method for measuring plasma catecholamines (R2 > 0.85). Reference intervals for l-DOPA, catecholamines, and metanephrines in n = 115 healthy individuals were established. Our work shows that analytes in the subnanomolar range in plasma can be derivatized in situ without any preceding sample extraction. The developed method shows improved sensitivity and selectivity over existing methods and enables simultaneous quantification of several classes of amines.
Collapse
Affiliation(s)
- Martijn van Faassen
- Department
of Laboratory Medicine and Department of Endocrinology, University Medical Center Groningen, University of
Groningen, Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Rainer Bischoff
- Analytical
Biochemistry, Department of Pharmacy, University
of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Karin Eijkelenkamp
- Department
of Laboratory Medicine and Department of Endocrinology, University Medical Center Groningen, University of
Groningen, Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Wilhelmina H. A. de Jong
- Department
of Laboratory Medicine and Department of Endocrinology, University Medical Center Groningen, University of
Groningen, Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Claude P. van der Ley
- Department
of Laboratory Medicine and Department of Endocrinology, University Medical Center Groningen, University of
Groningen, Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Ido P. Kema
- Department
of Laboratory Medicine and Department of Endocrinology, University Medical Center Groningen, University of
Groningen, Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
4
|
van Faassen M, Bouma G, de Hosson LD, Peters MAM, Kats-Ugurlu G, de Vries EGE, Walenkamp AME, Kema IP. Quantitative Profiling of Platelet-Rich Plasma Indole Markers by Direct-Matrix Derivatization Combined with LC-MS/MS in Patients with Neuroendocrine Tumors. Clin Chem 2019; 65:1388-1396. [PMID: 31551315 DOI: 10.1373/clinchem.2019.305359] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Currently, several indole markers are measured separately to support diagnosis and follow-up of patients with neuroendocrine tumors (NETs). We have developed a sensitive mass spectrometry method that simultaneously quantifies all relevant tryptophan-related indoles (tryptophan, 5-hydroxytryptophan, serotonin, 5-hydroxyindoleacetic acid) in platelet-rich plasma. Direct-matrix derivatization was used to make the chemical properties of the indoles uniform and to improve the analytical sensitivity and specificity of the assay. METHODS In situ derivatization was performed directly in platelet-rich plasma with propionic anhydride at an ambient temperature. The derivatized indoles were extracted by online solid-phase extraction and eluted to the analytical column for separation followed by mass spectrometric detection. The method was validated according to international guidelines. Platelet-rich plasma samples from 68 healthy individuals and 40 NET patients were analyzed for tryptophan, 5-hydroxytryptophan, serotonin, and 5-hydroxyindoleacetic acid. RESULTS The method reproducibly quantified relevant indoles in 8.5 min, including online sample cleanup. Intra- and interassay imprecision, evaluated at 3 different concentrations, ranged from 2.0% to 12% and 1.9% to 13%, respectively. The limit of quantification was sufficient to measure endogenous concentrations of all 4 indoles. Healthy individuals and NET patients had different concentrations of 5-hydroxytryptophan, serotonin, and 5-hydroxyindoleacetic acid, but tryptophan concentrations were the same. CONCLUSIONS Direct-matrix derivatization in combination with LC-MS/MS is a powerful tool for the simultaneous quantification of all tryptophan-related indoles in platelet-rich plasma. Simultaneous profiling of relevant indoles improves the biochemical characterization and follow-up of NETs.
Collapse
Affiliation(s)
- Martijn van Faassen
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Grytsje Bouma
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lotte D de Hosson
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marloes A M Peters
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Gursah Kats-Ugurlu
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Annemiek M E Walenkamp
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands;
| |
Collapse
|
5
|
Jiang R, Jiao Y, Zhang P, Liu Y, Wang X, Huang Y, Zhang Z, Xu F. Twin Derivatization Strategy for High-Coverage Quantification of Free Fatty Acids by Liquid Chromatography–Tandem Mass Spectrometry. Anal Chem 2017; 89:12223-12230. [DOI: 10.1021/acs.analchem.7b03020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ruiqi Jiang
- Key
Laboratory of Drug Quality Control and Pharmacovigilance, Ministry
of Education, ‡State Key Laboratory of Natural Medicine, and §Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yu Jiao
- Key
Laboratory of Drug Quality Control and Pharmacovigilance, Ministry
of Education, ‡State Key Laboratory of Natural Medicine, and §Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Pei Zhang
- Key
Laboratory of Drug Quality Control and Pharmacovigilance, Ministry
of Education, ‡State Key Laboratory of Natural Medicine, and §Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yong Liu
- Key
Laboratory of Drug Quality Control and Pharmacovigilance, Ministry
of Education, ‡State Key Laboratory of Natural Medicine, and §Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xu Wang
- Key
Laboratory of Drug Quality Control and Pharmacovigilance, Ministry
of Education, ‡State Key Laboratory of Natural Medicine, and §Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yin Huang
- Key
Laboratory of Drug Quality Control and Pharmacovigilance, Ministry
of Education, ‡State Key Laboratory of Natural Medicine, and §Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zunjian Zhang
- Key
Laboratory of Drug Quality Control and Pharmacovigilance, Ministry
of Education, ‡State Key Laboratory of Natural Medicine, and §Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Fengguo Xu
- Key
Laboratory of Drug Quality Control and Pharmacovigilance, Ministry
of Education, ‡State Key Laboratory of Natural Medicine, and §Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
6
|
Frey AJ, Wang Q, Busch C, Feldman D, Bottalico L, Mesaros CA, Blair IA, Vachani A, Snyder NW. Validation of highly sensitive simultaneous targeted and untargeted analysis of keto-steroids by Girard P derivatization and stable isotope dilution-liquid chromatography-high resolution mass spectrometry. Steroids 2016; 116:60-66. [PMID: 27743906 PMCID: PMC5127713 DOI: 10.1016/j.steroids.2016.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
Abstract
A multiplexed quantitative method for the analysis of three major unconjugated steroids in human serum by stable isotope dilution liquid chromatography-high resolution mass spectrometry (LC-HRMS) was developed and validated on a Q Exactive Plus hybrid quadrupole/Orbitrap mass spectrometer. This quantification utilized isotope dilution and Girard P derivatization on the keto-groups of testosterone (T), androstenedione (AD) and dehydroepiandrosterone (DHEA) to improve ionization efficiency using electrospray ionization. Major isomeric compounds to T and DHEA; the inactive epimer of testosterone (epiT), and the metabolite of AD, 5α-androstanedione (5α-AD) were completely resolved on a biphenyl column within an 18min method. Inter- and intra-day method validation using LC-HRMS with qualifying product ions was performed and acceptable analytical performance was achieved. The method was further validated by comparing steroid levels from 100μL of serum from young vs older subjects. Since this approach provides high-dimensional HRMS data, untargeted analysis by age group was performed. DHEA and T were detected among the top analytes most significantly different across the two groups after untargeted LC-HRMS analysis, as well as a number of other still unknown metabolites, indicating the potential for combined targeted/untargeted analysis in steroid analysis.
Collapse
Affiliation(s)
| | - Qingqing Wang
- Penn SRP Center and Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, USA.
| | - Christine Busch
- Penn SRP Center and Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, USA.
| | | | - Lisa Bottalico
- Penn SRP Center and Center of Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, USA.
| | - Clementina A Mesaros
- Penn SRP Center and Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, USA.
| | - Ian A Blair
- Penn SRP Center and Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, USA.
| | - Anil Vachani
- Division of Pulmonary, Allergy and Critical Care, University of Pennsylvania, USA.
| | - Nathaniel W Snyder
- A.J. Drexel Autism Institute, Drexel University, Center of Excellence in Environmental Toxicology, University of Pennsylvania, USA.
| |
Collapse
|
7
|
Abstract
Steroid hormones are measured clinically to determine if a patient has a pathological process occurring in the adrenal gland, or other hormone responsive organs. They are very similar in structure making them analytically challenging to measure. Additionally, these hormones have vast concentration differences in human serum adding to the measurement complexity. GC–MS was the gold standard methodology used to measure steroid hormones clinically, followed by radioimmunoassay, but that was replaced by immunoassay due to ease of use. LC–MS/MS has now become a popular alternative owing to simplified sample preparation than for GC–MS and increased specificity and sensitivity over immunoassay. This review will discuss these methodologies and some new developments that could simplify and improve steroid hormone analysis in serum.
Collapse
|
8
|
|