1
|
Taylor AM, Chan DLH, Tio M, Patil SM, Traina TA, Robson ME, Khasraw M. PARP (Poly ADP-Ribose Polymerase) inhibitors for locally advanced or metastatic breast cancer. Cochrane Database Syst Rev 2021; 4:CD011395. [PMID: 33886122 PMCID: PMC8092476 DOI: 10.1002/14651858.cd011395.pub2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Locally advanced and metastatic breast cancer remains a challenge to treat. With emerging study results, it is important to interpret the available clinical data and apply the evidence offering the most effective treatment to the right patient. Poly(ADP Ribose) Polymerase (PARP) inhibitors are a new class of drug and their role in the treatment of locally advanced and metastatic breast cancer is being established. OBJECTIVES To determine the efficacy, safety profile, and potential harms of Poly(ADP-Ribose) Polymerase (PARP) inhibitors in the treatment of patients with locally advanced or metastatic breast cancer. The primary outcome of interest was overall survival; secondary outcomes included progression-free survival, tumour response rate, quality of life, and adverse events. SEARCH METHODS On 8 June 2020, we searched the Cochrane Breast Cancer Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE via OvidSP, Embase via OvidSP, World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) search portal and ClinicalTrials.gov. We also searched proceedings from the major oncology conferences as well as scanned reference lists from eligible publications and contacted corresponding authors of trials for further information, where needed. SELECTION CRITERIA We included randomised controlled trials on participants with locally advanced or metastatic breast cancer comparing 1) chemotherapy in combination with PARP inhibitors, compared to the same chemotherapy without PARP inhibitors or 2) treatment with PARP inhibitors, compared to treatment with other chemotherapy. We included studies that reported on our primary outcome of overall survival and secondary outcomes including progression-free survival, tumour response rate, quality of life, and adverse events. DATA COLLECTION AND ANALYSIS We used standard methodological procedures defined by Cochrane. Summary statistics for the endpoints used hazard ratios (HR) with 95% confidence intervals (CI) for overall survival and progression-free survival, and odds ratios (OR) for response rate (RR) and toxicity. MAIN RESULTS We identified 49 articles for qualitative synthesis, describing five randomised controlled trials that were included in the quantitative synthesis (meta-analysis). A sixth trial was assessed as eligible but had ended prematurely and no data were available for inclusion in our meta-analysis. Risk of bias was predominately low to unclear across all studies except in regards to performance bias (3/5 high risk) and detection bias for the outcomes of quality of life (2/2 high risk) and reporting of adverse events (3/5 high risk). High-certainty evidence shows there may be a small advantage in overall survival (HR 0.87, 95% CI 0.76 to 1.00; 4 studies; 1435 patients). High-certainty evidence shows that PARP inhibitors offer an improvement in PFS in locally advanced/metastatic HER2-negative, BRCA germline mutated breast cancer patients (HR 0.63, 95% CI 0.56 to 0.71; 5 studies; 1474 patients). There was no statistical heterogeneity for these outcomes. Subgroup analyses for PFS outcomes based on trial level data were performed for triple-negative breast cancer, hormone-positive and/or HER2-positive breast cancer, BRCA1 and BRCA2 germline mutations, and patients who had received prior chemotherapy for advanced breast cancer or not. The subgroup analyses showed a persistent PFS benefit regardless of the subgroup chosen. Pooled analysis shows PARP inhibitors likely result in a moderate improvement in tumour response rate compared to other treatment arms (66.9% vs 48.9%; RR 1.39, 95% CI 1.24 to 1.54; 5 studies; 1185 participants; moderate-certainty evidence). The most common adverse events reported across all five studies included neutropenia, anaemia and fatigue. Grade 3 or higher adverse events probably occur no less frequently in patients receiving PARP inhibitors (59.4% for PARP arm versus 64.5% for non-PARP arm, RR 0.98, 95% CI 0.91 to 1.04; 5 studies; 1443 participants; moderate-certainty evidence). Only two studies reported quality of life outcomes so this was not amenable to meta-analysis. However, both studies that did assess quality of life showed PARP inhibitors were superior compared to physician's choice of chemotherapy in terms of participant-reported outcomes. AUTHORS' CONCLUSIONS In people with locally advanced or metastatic HER2-negative, BRCA germline mutated breast cancer, PARP inhibitors offer an improvement in progression-free survival, and likely improve overall survival and tumour response rates. This systematic review provides evidence supporting the use of PARP inhibitors as part of the therapeutic strategy for breast cancer patients in this subgroup. The toxicity profile for PARP inhibitors is probably no worse than chemotherapy but more information is required regarding quality of life outcomes, highlighting the importance of collecting such data in future studies. Future studies should also be powered to detect clinically important differences in overall survival and could focus on the role of PARP inhibitors in other relevant breast cancer populations, including HER2-positive, BRCA-negative/homologous recombination repair-deficient and Programmed Death-Ligand 1 (PDL1) positive.
Collapse
Affiliation(s)
- Amelia M Taylor
- Medical Oncology, Royal North Shore Hospital, Sydney, Australia
| | - David Lok Hang Chan
- Medical Oncology, Royal North Shore Hospital, Sydney, Australia
- Faculty of Medicine and Health, Northern Clinical School, University of Sydney, Sydney, Australia
| | - Martin Tio
- Medical Oncology, Royal North Shore Hospital, Sydney, Australia
| | - Sujata M Patil
- Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tiffany A Traina
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Mark E Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Mustafa Khasraw
- NHMRC Clinical Trials Centre, The University of Sydney, Camperdown, Australia
| |
Collapse
|
2
|
Khasraw M, Patil SM, Traina TA, Robson ME. Poly(ADP-Ribose) Polymerase (PARP) Inhibitors for locally advanced or metastatic breast cancer. Hippokratia 2014. [DOI: 10.1002/14651858.cd011395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mustafa Khasraw
- NHMRC Clinical Trials Centre, University of Sydney; University of Sydney Sydney Australia
| | - Sujata M Patil
- Memorial Sloan-Kettering Cancer Center; Epidemiology and Biostatistics; 307 E 63rd New York NY USA 10065
| | - Tiffany A Traina
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College; Department of Medicine; New York NY USA 10065
| | - Mark E Robson
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College; Department of Medicine; New York NY USA 10065
| |
Collapse
|
3
|
Abstract
Despite therapeutic advances, the development of breast cancer brain metastases (BCBM) is still the harbinger of a dismal prognosis. Patient outcomes vary depending on factors, including tumor phenotype, extent of disease within and outside the brain, as well as patient performance status. Treatment includes surgery, radiation therapy and systemic therapy determined by patient and tumor characteristics. Despite these approaches, novel treatments are needed and there is growing interest in systemic therapies. However, the efficacy of pharmacologic agents is hampered by poor penetration of drugs across the blood-brain barrier. Therefore, there is a pressing need for a greater understanding of the natural history of BCBM to guide the development of further therapies. This review analyzes prognosis and treatment of BCBM by tumor phenotype and discusses ongoing research into new therapies.
Collapse
Affiliation(s)
- Hao-Wen Sim
- Andrew Love Cancer Centre, Geelong Hospital, VIC, Australia
| | | | | | | |
Collapse
|
4
|
Ye N, Chen CH, Chen T, Song Z, He JX, Huan XJ, Song SS, Liu Q, Chen Y, Ding J, Xu Y, Miao ZH, Zhang A. Design, Synthesis, and Biological Evaluation of a Series of Benzo[de][1,7]naphthyridin-7(8H)-ones Bearing a Functionalized Longer Chain Appendage as Novel PARP1 Inhibitors. J Med Chem 2013; 56:2885-903. [DOI: 10.1021/jm301825t] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Na Ye
- CAS
Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal
Chemistry Laboratory, ‡State Key Laboratory of Drug Research, and §CAS Key Laboratory
of Receptor Research, and Drug Discovery and Design Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| | - Chuan-Huizi Chen
- CAS
Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal
Chemistry Laboratory, ‡State Key Laboratory of Drug Research, and §CAS Key Laboratory
of Receptor Research, and Drug Discovery and Design Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| | - TianTian Chen
- CAS
Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal
Chemistry Laboratory, ‡State Key Laboratory of Drug Research, and §CAS Key Laboratory
of Receptor Research, and Drug Discovery and Design Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| | - Zilan Song
- CAS
Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal
Chemistry Laboratory, ‡State Key Laboratory of Drug Research, and §CAS Key Laboratory
of Receptor Research, and Drug Discovery and Design Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| | - Jin-Xue He
- CAS
Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal
Chemistry Laboratory, ‡State Key Laboratory of Drug Research, and §CAS Key Laboratory
of Receptor Research, and Drug Discovery and Design Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| | - Xia-Juan Huan
- CAS
Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal
Chemistry Laboratory, ‡State Key Laboratory of Drug Research, and §CAS Key Laboratory
of Receptor Research, and Drug Discovery and Design Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| | - Shan-Shan Song
- CAS
Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal
Chemistry Laboratory, ‡State Key Laboratory of Drug Research, and §CAS Key Laboratory
of Receptor Research, and Drug Discovery and Design Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| | - Qiufeng Liu
- CAS
Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal
Chemistry Laboratory, ‡State Key Laboratory of Drug Research, and §CAS Key Laboratory
of Receptor Research, and Drug Discovery and Design Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| | - Yi Chen
- CAS
Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal
Chemistry Laboratory, ‡State Key Laboratory of Drug Research, and §CAS Key Laboratory
of Receptor Research, and Drug Discovery and Design Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| | - Jian Ding
- CAS
Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal
Chemistry Laboratory, ‡State Key Laboratory of Drug Research, and §CAS Key Laboratory
of Receptor Research, and Drug Discovery and Design Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| | - Yechun Xu
- CAS
Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal
Chemistry Laboratory, ‡State Key Laboratory of Drug Research, and §CAS Key Laboratory
of Receptor Research, and Drug Discovery and Design Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| | - Ze-Hong Miao
- CAS
Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal
Chemistry Laboratory, ‡State Key Laboratory of Drug Research, and §CAS Key Laboratory
of Receptor Research, and Drug Discovery and Design Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| | - Ao Zhang
- CAS
Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal
Chemistry Laboratory, ‡State Key Laboratory of Drug Research, and §CAS Key Laboratory
of Receptor Research, and Drug Discovery and Design Center, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China 201203
| |
Collapse
|