1
|
Saha B, Das A, Jangid K, Kumar A, Kumar V, Jaitak V. Identification of coumarin derivatives targeting acetylcholinesterase for Alzheimer's disease by field-based 3D-QSAR, pharmacophore model-based virtual screening, molecular docking, MM/GBSA, ADME and MD Simulation study. Curr Res Struct Biol 2024; 7:100124. [PMID: 38292820 PMCID: PMC10826614 DOI: 10.1016/j.crstbi.2024.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
Alzheimer's disease (AD) leads to gradual memory loss including other compromised cognitive abilities. Acetylcholinesterase (AChE), an important biochemical enzyme from the cholinesterase (ChE) family, is recognized as primary pharmacological target for treating AD. Currently marketed drugs for AD treatment are primarily AChE inhibitors and coumarin derivatives comprising a wide variety of pharmacological activities have proved their efficacy towards AChE inhibition. Ensaculin (KA-672 HCl), a compound that belong to the coumarin family, is a clinical trial candidate for AD treatment. Therefore, a ligand library was prepared with 60 reported coumarin derivatives for field-based 3D-QSAR and pharmacophore modelling. The field-based 3D-QSAR model obtained at partial least square (PLS) factor 7, was the best validated model that predicted activity closer to original activity for each ligand introduced. The contour maps demonstrated spatial distribution of favourable and unfavorable steric, hydrophobic, electrostatic and H-bond donor and acceptor contours around coumarin nucleus. The best pharmacophore model, ADHRR_1 exhibited five essential pharmacophoric features of four different traits for optimum AChE inhibition. Virtual screening through ADHRR_1 accompanied with molecular docking and MM/GBSA identified 10 HITs from a 4,00,000 coumarin derivatives from PubChem database. HITs comprised docking scores ranging from -12.096 kcal/mol to -8.271 kcal/mol and compared with the reference drug Donepezil (-8.271 kcal/mol). ADME properties analysis led into detecting two leads (HIT 1 and HIT 2) among these 10 HITs. Molecular Dynamics Simulation indicated thermodynamic stability of the complex of lead compounds with AChE protein. Finally, thorough survey of the experimental results from 3D-QSAR modelling, pharmacophore modelling and molecular docking interactions led us to develop the lead formula I for future advancements in treating AD through AChE inhibitors.
Collapse
Affiliation(s)
- Bikram Saha
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Agnidipta Das
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Kailash Jangid
- Department of Chemistry, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Amit Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| |
Collapse
|
2
|
Tikhonova MA, Chang HM, Singh SK. Editorial: Experimental and innovative approaches to multi-target treatment of Parkinson's and Alzheimer's diseases - Volume II. Front Neurosci 2023; 17:1171866. [PMID: 37034172 PMCID: PMC10080043 DOI: 10.3389/fnins.2023.1171866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Maria A Tikhonova
- Laboratory of the Experimental Models of Neurodegenerative Processes, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Hung-Ming Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | |
Collapse
|