1
|
Kaya B, Acar Çevik U, Çiftçi B, Duran HE, Türkeş C, Işık M, Bostancı HE, Kaplancıklı ZA, Beydemir Ş. Synthesis, α-Glucosidase, α-Amylase, and Aldol Reductase Inhibitory Activity with Molecular Docking Study of Novel Imidazo[1,2- a]pyridine Derivatives. ACS OMEGA 2024; 9:42905-42914. [PMID: 39464438 PMCID: PMC11500159 DOI: 10.1021/acsomega.4c05619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
Inhibition ofaldose reductase (AR), α-glycosidase (α-GLY), and α-amylase (α-AMY) are some of the essential targets in diabetes mellitus (DM). Here, a series of imidazo[1,2-a]pyridine-based 1,3,4-thiadiazole derivatives (8a-k) were successfully synthesized and characterized using 1H NMR, 13C NMR, and HRMS spectroscopic techniques. The inhibition effects of the synthesized derivatives against AR, α-GLY, and α-AMY were evaluated using both in vitro and in silico methods. In vitro studies revealed that the derivatives (8a-k) showed significant inhibition activity. The results showed that the novel derivatives (8a-k) demonstrated potential inhibitory activity, with K I values covering the following ranges: 23.47 ± 2.40 to 139.60 ± 13.33 nM for AR and 6.09 ± 0.37 to 119.80 ± 12.31 μM for α-GLY, with IC50 values 81.14 to 153.51 μM for α-AMY. Furthermore, many of these compounds exhibited high inhibition activity, while some of them showed higher potency than the reference compounds. Molecular docking of the target compounds was carried out in the active sites of AR (PDB ID: 4JIR) and α-GLY (PDB ID: 5NN8).
Collapse
Affiliation(s)
- Betül Kaya
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Zonguldak Bulent Ecevit University, 67600 Zonguldak, Turkey
| | - Ulviye Acar Çevik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Bilge Çiftçi
- Vocational
School of Health Services, Bilecik Şeyh
Edebali University, 11230 Bilecik, Turkey
| | - Hatice Esra Duran
- Department
of Medical Biochemistry, Faculty of Medicine, Kafkas University, 36100 Kars, Turkey
| | - Cüneyt Türkeş
- Department
of Biochemistry, Faculty of Pharmacy, Erzincan
Binali Yıldırım University, 24002 Erzincan, Turkey
| | - Mesut Işık
- Department
of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey
| | - Hayrani Eren Bostancı
- Department
of Biochemistry, Faculty of Pharmacy, Sivas
Cumhuriyet University, 58140 Sivas, Turkey
| | - Zafer Asım Kaplancıklı
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Şükrü Beydemir
- Department
of Biochemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| |
Collapse
|
2
|
Li M, Sun J, Liang B, Min X, Hu J, Wu R, Xu X. Thiazolidine-2,4-dione derivatives as potential α-glucosidase inhibitors: Synthesis, inhibitory activity, binding interaction and hypoglycemic activity. Bioorg Chem 2024; 144:107177. [PMID: 38335756 DOI: 10.1016/j.bioorg.2024.107177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
In order to find effective α-glucosidase inhibitors, a series of thiazolidine-2,4-dione derivatives (C1 ∼ 36) were synthesized and evaluated for α-glucosidase inhibitory activity. Compared to positive control acarbose (IC50 = 654.35 ± 65.81 μM), all compounds (C1 ∼ 36) showed stronger α-glucosidase inhibitory activity with IC50 values of 0.52 ± 0.06 ∼ 9.31 ± 0.96 μM. Among them, C23 with the best anti-α-glucosidase activity was a reversible mixed-type inhibitor. Fluorescence quenching suggested the binding process of C23 with α-glucosidase in a static process. Fluorescence quenching, CD spectra, and 3D fluorescence spectra results also implied that the binding of C23 with α-glucosidase caused the conformational change of α-glucosidase to inhibit the activity. Molecular docking displayed the binding interaction of C23 with α-glucosidase. Compound C23 (8 ∼ 64 μM) showed no cytotoxicity against LO2 and 293 cells. Moreover, oral administration of C23 (50 mg/kg) could reduce blood glucose and improve glucose tolerance in mice.
Collapse
Affiliation(s)
- Mengyue Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Jinping Sun
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Bingwen Liang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Xiaofeng Min
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Jinhui Hu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China.
| | - Rihui Wu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China.
| | - Xuetao Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
3
|
Kumar D, Aggarwal N, Kumar V, Chopra H, Marwaha RK, Sharma R. Emerging synthetic strategies and pharmacological insights of 1,3,4-thiadiazole derivatives: a comprehensive review. Future Med Chem 2024; 16:563-581. [PMID: 38353003 DOI: 10.4155/fmc-2023-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024] Open
Abstract
This review meticulously examines the synthesis techniques for 1,3,4-thiadiazole derivatives, focusing on cyclization, condensation reactions and functional group transformations. It enhances the understanding of these chemical methods that re crucial for tailoring derivative properties and functionalities. This study is considered to be vital for researchers, detailing established effects such as antioxidant, antimicrobial and anticancer activities, and revealing emerging pharmacological potentials such as neuroprotective, antiviral and antidiabetic properties. It also discusses the molecular mechanisms underlying these effects. In addition, this article covers structure-activity relationship studies and computational modelling that are essential for designing potent, selective 1,3,4-thiadiazole compounds. This work lays a foundation for future research and targeted therapeutic development.
Collapse
Affiliation(s)
- Davinder Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (deemed to be a university), Mullana, 133207, India
| | - Virender Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of engineering, Saveetha Institute of Medical & Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Rakesh Kumar Marwaha
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
4
|
Kumar H, Dhameja M, Kurella S, Uma A, Gupta P. Synthesis of 1,2,3-triazole-1,3,4-thiadiazole hybrids as novel α-glucosidase inhibitors by in situ azidation/click assembly. Arch Pharm (Weinheim) 2023:e2300145. [PMID: 37236165 DOI: 10.1002/ardp.202300145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
α-Glucosidase inhibition is widely used in the oral management of diabetes mellitus (DM), a disease characterized by high blood sugar levels (hyperglycemia) and abnormal carbohydrate metabolism. In this respect, a series of 1,2,3-triazole-1,3,4-thiadiazole hybrids 7a-j were synthesized, inspired by a copper-catalyzed one-pot azidation/click assembly approach. All the synthesized hybrids were screened for inhibition of the α-glucosidase enzyme, displaying IC50 values ranging from 63.35 ± 0.72 to 613.57 ± 1.98 μM, as compared to acarbose (reference) with IC50 of 844.81 ± 0.53 μM. The hybrids 7h and 7e with 3-nitro and 4-methoxy substituents at the phenyl ring of the thiadiazole moiety were the best active hybrids of this series with IC50 values of 63.35 ± 0.72 μM, and 67.61 ± 0.64 μM, respectively. Enzyme kinetics analysis of these compounds revealed a mixed mode of inhibition. Moreover, molecular docking studies were also performed to gain insights into the structure-activity-relationships of the potent compounds and their corresponding analogs.
Collapse
Affiliation(s)
- Hariom Kumar
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Manoj Dhameja
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Sirisha Kurella
- Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, Telangana, India
| | - Adepally Uma
- Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, Telangana, India
| | - Preeti Gupta
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|