1
|
Ghasabi F, Hashempour A, Khodadad N, Bemani S, Keshani P, Shekiba MJ, Hasanshahi Z. First report of computational protein-ligand docking to evaluate susceptibility to HIV integrase inhibitors in HIV-infected Iranian patients. Biochem Biophys Rep 2022; 30:101254. [PMID: 35368742 PMCID: PMC8968007 DOI: 10.1016/j.bbrep.2022.101254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/04/2022] Open
Abstract
Background Iran has recently included integrase (INT) inhibitors (INTIs) in the first-line treatment regimen in human immunodeficiency virus (HIV)-infected patients. However, there is no bioinformatics data to elaborate the impact of resistance-associated mutations (RAMs) and naturally occurring polymorphisms (NOPs) on INTIs treatment outcome in Iranian patients. Method In this cross-sectional survey, 850 HIV-1-infected patients enrolled; of them, 78 samples had successful sequencing results for INT gene. Several analyses were performed including docking screening, genotypic resistance, secondary/tertiary structures, post-translational modification (PTM), immune epitopes, etc. Result The average docking energy (E value) of different samples with elvitegravir (EVG) and raltegravir (RAL) was more than other INTIs. Phylogenetic tree analysis and Stanford HIV Subtyping program revealed HIV-1 CRF35-AD was the predominant subtype (94.9%) in our cases; in any event, online subtyping tools confirmed A1 as the most frequent subtype. For the first time, CRF-01B and BF were identified as new subtypes in Iran. Decreased CD4 count was associated with several factors: poor or unstable adherence, naïve treatment, and drug user status. Conclusion As the first bioinformatic report on HIV-integrase from Iran, this study indicates that EVG and RAL are the optimal INTIs in first-line antiretroviral therapy (ART) in Iranian patients. Some conserved motifs and specific amino acids in INT-protein binding sites have characterized that mutation(s) in them may disrupt INT-drugs interaction and cause a significant loss in susceptibility to INTIs. Good adherence, treatment of naïve patients, and monitoring injection drug users are fundamental factors to control HIV infection in Iran effectively.
Collapse
Key Words
- Antiretroviral therapy, ART
- Behavioral Diseases Consultation Center, BDCC
- Bictegravir, BIC
- C-terminal domain, CTD
- CRF35-AD
- Cabotegravir, CBT
- Catalytic core domain, CCD
- Dolutegravir, DTG
- Drug resistance
- Elvitegravir, EVG
- Grand average hydropathy, GRAVY
- HIV
- Human immunodeficiency virus, HIV
- INT, Integrase
- INTIs, Integrase inhibitors (INTIs)
- Injecting drug users, IDUs
- Integrase
- Integrase inhibitors
- Molecular docking
- N-terminal domain, NTD
- Naturally occurring polymorphisms, NOPs
- Post-translational modification, PTM
- Raltegravir, RAL
- Resistance-associated mutations, RAMs
Collapse
Affiliation(s)
- Farzane Ghasabi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ava Hashempour
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nastaran Khodadad
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soudabeh Bemani
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Keshani
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Javad Shekiba
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hasanshahi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Shinde PB, Bhowmick S, Alfantoukh E, Patil PC, Wabaidur SM, Chikhale RV, Islam MA. De novo design based identification of potential HIV-1 integrase inhibitors: A pharmacoinformatics study. Comput Biol Chem 2020; 88:107319. [PMID: 32801062 DOI: 10.1016/j.compbiolchem.2020.107319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/10/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022]
Abstract
In the present study, pharmacoinformatics paradigms include receptor-based de novo design, virtual screening through molecular docking and molecular dynamics (MD) simulation are implemented to identify novel and promising HIV-1 integrase inhibitors. The de novodrug/ligand/molecule design is a powerful and effective approach to design a large number of novel and structurally diverse compounds with the required pharmacological profiles. A crystal structure of HIV-1 integrase bound with standard inhibitor BI-224436 is used and a set of 80,000 compounds through the de novo approach in LigBuilder is designed. Initially, a number of criteria including molecular docking, in-silico toxicity and pharmacokinetics profile assessments are implied to reduce the chemical space. Finally, four de novo designed molecules are proposed as potential HIV-1 integrase inhibitors based on comparative analyses. Notably, strong binding interactions have been identified between a few newly identified catalytic amino acid residues and proposed HIV-1 integrase inhibitors. For evaluation of the dynamic stability of the protein-ligand complexes, a number of parameters are explored from the 100 ns MD simulation study. The MD simulation study suggested that proposed molecules efficiently retained their molecular interaction and structural integrity inside the HIV-1 integrase. The binding free energy is calculated through the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) approach for all complexes and it also explains their thermodynamic stability. Hence, proposed molecules through de novo design might be critical to inhibiting the HIV-1 integrase.
Collapse
Affiliation(s)
- Pooja Balasaheb Shinde
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Etidal Alfantoukh
- Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Pritee Chunarkar Patil
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, India
| | - Saikh Mohammad Wabaidur
- Department of Chemistry P.O. Box 2455, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rupesh V Chikhale
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom; School of Health Sciences, University of Kwazulu-Natal, Westville Campus, Durban, South Africa; Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa.
| |
Collapse
|
3
|
Panwar U, Singh SK. Structure-based virtual screening toward the discovery of novel inhibitors for impeding the protein-protein interaction between HIV-1 integrase and human lens epithelium-derived growth factor (LEDGF/p75). J Biomol Struct Dyn 2017; 36:3199-3217. [PMID: 28948865 DOI: 10.1080/07391102.2017.1384400] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
HIV-1 integrase is a unique promising component of the viral replication cycle, catalyzing the integration of reverse transcribed viral cDNA into the host cell genome. Generally, IN activity requires both viral as well as a cellular co-factor in the processing replication cycle. Among them, the human lens epithelium-derived growth factor (LEDGF/p75) represented as promising cellular co-factor which supports the viral replication by tethering IN to the chromatin. Due to its major importance in the early steps of HIV replication, the interaction between IN and LEDGF/p75 has become a pleasing target for anti-HIV drug discovery. The present study involves the finding of novel inhibitor based on the information of dimeric CCD of IN in complex with known inhibitor, which were carried out by applying a structure-based virtual screening concept with molecular docking. Additionally, Free binding energy, ADME properties, PAINS analysis, Density Functional Theory, and Enrichment Calculations were performed on selected compounds for getting a best lead molecule. On the basis of these analyses, the current study proposes top 3 compounds: Enamine-Z742267384, Maybridge-HTS02400, and Specs-AE-848/37125099 with acceptable pharmacological properties and enhanced binding affinity to inhibit the interaction between IN and LEDGF/p75. Furthermore, Simulation studies were carried out on these molecules to expose their dynamics behavior and stability. We expect that the findings obtained here could be future therapeutic agents and may provide an outline for the experimental studies to stimulate the innovative strategy for research community.
Collapse
Affiliation(s)
- Umesh Panwar
- a Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics , Alagappa University , Karaikudi 630004 , Tamil Nadu , India
| | - Sanjeev Kumar Singh
- a Computer Aided Drug Design and Molecular Modelling Lab, Department of Bioinformatics , Alagappa University , Karaikudi 630004 , Tamil Nadu , India
| |
Collapse
|
4
|
Luo Y, Muesing MA. Mass spectrometry-based proteomic approaches for discovery of HIV-host interactions. Future Virol 2014; 9:979-992. [PMID: 25544858 DOI: 10.2217/fvl.14.86] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A molecular understanding of viral infection requires a multi-disciplinary approach. Mass spectrometry has emerged as an indispensable tool to investigate the complex and dynamic interactions between HIV-1 and its host. It has been employed to study protein associations, changes in protein abundance and post-translational modifications occurring after viral infection. Here, we review and provide examples of mass spectrometry-based proteomic approaches currently used to explore virus-host interaction. Efforts in this area are certain to accelerate the discovery of the unique molecular strategies utilized by the virus to commandeer the cell as well as mechanisms of host defense.
Collapse
Affiliation(s)
- Yang Luo
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue 7th Floor, New York, NY 10016, USA
| | - Mark A Muesing
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, 455 First Avenue 7th Floor, New York, NY 10016, USA
| |
Collapse
|
5
|
Han YS, Xiao WL, Quashie PK, Mesplède T, Xu H, Deprez E, Delelis O, Pu JX, Sun HD, Wainberg MA. Development of a fluorescence-based HIV-1 integrase DNA binding assay for identification of novel HIV-1 integrase inhibitors. Antiviral Res 2013; 98:441-8. [PMID: 23583286 DOI: 10.1016/j.antiviral.2013.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/25/2013] [Accepted: 04/01/2013] [Indexed: 10/27/2022]
Abstract
Human immunodeficiency virus integrase (HIV-1 IN) inhibitors that are currently approved or are in advanced clinical trials specifically target the strand transfer step of integration. However, considerable cross-resistance exists among some members of this class of IN inhibitors. Intriguingly, though, HIV-1 IN possesses multiple sites, distinct from those involved in the strand transfer step, that could be targeted to develop new HIV-1 IN inhibitors. We have developed a fluorescent HIV-1 IN DNA binding assay that can identify small molecules termed IN binding inhibitors (INBIs) that inhibit IN binding to viral DNA. This assay has been optimized with respect to concentrations of each protein, long terminal repeat (LTR) DNA substrate, salt, and time, and has been used successfully to measure the HIV-1 IN DNA binding activity of a well-characterized INBI termed FZ41. In addition, we have used the assay to screen a small library of natural products, resulting in the identification of nigranoic acid as a new INBI. The proposed fluorescence assay is easy and inexpensive, and provides a high-throughput detection method for determination of HIV-1 IN DNA binding activity, monitoring of enzyme kinetics, and high-throughput screening for the identification of new INBIs.
Collapse
Affiliation(s)
- Ying-Shan Han
- McGill University AIDS Centre, Lady Davis for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Cellular cofactors of lentiviral integrase: from target validation to drug discovery. Mol Biol Int 2012; 2012:863405. [PMID: 22928108 PMCID: PMC3420096 DOI: 10.1155/2012/863405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/03/2012] [Accepted: 06/27/2012] [Indexed: 01/30/2023] Open
Abstract
To accomplish their life cycle, lentiviruses make use of host proteins, the so-called cellular cofactors. Interactions between host cell and viral proteins during early stages of lentiviral infection provide attractive new antiviral targets. The insertion of lentiviral cDNA in a host cell chromosome is a step of no return in the replication cycle, after which the host cell becomes a permanent carrier of the viral genome and a producer of lentiviral progeny. Integration is carried out by integrase (IN), an enzyme playing also an important role during nuclear import. Plenty of cellular cofactors of HIV-1 IN have been proposed. To date, the lens epithelium-derived growth factor (LEDGF/p75) is the best studied cofactor of HIV-1 IN. Moreover, small molecules that block the LEDGF/p75-IN interaction have recently been developed for the treatment of HIV infection. The nuclear import factor transportin-SR2 (TRN-SR2) has been proposed as another interactor of HIV IN-mediating nuclear import of the virus. Using both proteins as examples, we will describe approaches to be taken to identify and validate novel cofactors as new antiviral targets. Finally, we will highlight recent advances in the design and the development of small-molecule inhibitors binding to the LEDGF/p75-binding pocket in IN (LEDGINs).
Collapse
|
7
|
Masuda T. Non-Enzymatic Functions of Retroviral Integrase: The Next Target for Novel Anti-HIV Drug Development. Front Microbiol 2011; 2:210. [PMID: 22016749 PMCID: PMC3192317 DOI: 10.3389/fmicb.2011.00210] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 09/26/2011] [Indexed: 01/01/2023] Open
Abstract
Integrase (IN) is a retroviral enzyme that catalyzes the insertion of viral DNA (vDNA) into host chromosomal DNA, which is necessary for efficient viral replication. The crystal structure of prototype foamy virus IN bound to cognate vDNA ends, a complex referred to as the intasome, has recently been resolved. Structure analysis of the intasome revealed a tetramer structure of IN that was required for its catalytic function, and also showed the inhibitory mechanism of the IN inhibitor. Genetic analysis of IN has revealed additional non-enzymatic roles during viral replication cycles at several steps other than integration. However, the higher order structure of IN that is required for its non-enzymatic functions remains to be delineated. This is the next major challenge in the field of IN structural biology hoping to be a platform for the development of novel IN inhibitors to treat human immunodeficiency virus type 1 infectious disease.
Collapse
Affiliation(s)
- Takao Masuda
- Department of Immunotherapeutics, Tokyo Medical and Dental University Tokyo, Japan
| |
Collapse
|