1
|
Mao J, Akhtar J, Zhang X, Sun L, Guan S, Li X, Chen G, Liu J, Jeon HN, Kim MS, No KT, Wang G. Comprehensive strategies of machine-learning-based quantitative structure-activity relationship models. iScience 2021; 24:103052. [PMID: 34553136 PMCID: PMC8441174 DOI: 10.1016/j.isci.2021.103052] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Early quantitative structure-activity relationship (QSAR) technologies have unsatisfactory versatility and accuracy in fields such as drug discovery because they are based on traditional machine learning and interpretive expert features. The development of Big Data and deep learning technologies significantly improve the processing of unstructured data and unleash the great potential of QSAR. Here we discuss the integration of wet experiments (which provide experimental data and reliable verification), molecular dynamics simulation (which provides mechanistic interpretation at the atomic/molecular levels), and machine learning (including deep learning) techniques to improve QSAR models. We first review the history of traditional QSAR and point out its problems. We then propose a better QSAR model characterized by a new iterative framework to integrate machine learning with disparate data input. Finally, we discuss the application of QSAR and machine learning to many practical research fields, including drug development and clinical trials.
Collapse
Affiliation(s)
- Jiashun Mao
- The Interdisciplinary Graduate Program in Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen, Guangdong 518055 China
| | - Javed Akhtar
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong 518055, China
| | - Xiao Zhang
- Shanghai Rural Commercial Bank Co., Ltd, Shanghai 200002, China
| | - Liang Sun
- Department of Physics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Shenghui Guan
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen, Guangdong 518055 China
| | - Xinyu Li
- School of Life and Health Sciences and Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Guangming Chen
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong 518055, China
| | - Jiaxin Liu
- Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeon-Nae Jeon
- Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Min Sung Kim
- Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyoung Tai No
- The Interdisciplinary Graduate Program in Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
| | - Guanyu Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Shenzhen, Guangdong 518055 China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen, Guangdong 518055, China
| |
Collapse
|
2
|
Qin R, Wang H, Yan A. Classification and QSAR models of leukotriene A4 hydrolase (LTA4H) inhibitors by machine learning methods. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:411-431. [PMID: 33896285 DOI: 10.1080/1062936x.2021.1910862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Leukotriene A4 hydrolase (LTA4H) is an important anti-inflammatory target which can convert leukotriene A4 (LTA4) into pro-inflammatory substance leukotriene B4 (LTB4). In this paper, we built 18 classification models for 463 LTA4H inhibitors by using support vector machine (SVM), random forest (RF) and K-Nearest Neighbour (KNN). The best classification model (Model 2A) was built from RF and MACCS fingerprints. The prediction accuracy of 88.96% and the Matthews correlation coefficient (MCC) of 0.74 had been achieved on the test set. We also divided the 463 LTA4H inhibitors into six subsets using K-Means. We found that the highly active LTA4H inhibitors mostly contained diphenylmethane or diphenyl ether as the scaffold and pyridine or piperidine as the side chain. In addition, six quantitative structure-activity relationship (QSAR) models for 172 LTA4H inhibitors were built by multiple linear regression (MLR) and SVM. The best QSAR model (Model 6A) was built by using SVM and CORINA Symphony descriptors. The coefficients of determination of the training set and the test set were equal to 0.81 and 0.79, respectively. Classification and QSAR models could be used for subsequent virtual screening, and the obtained fragments that were important for highly active inhibitors would be helpful for designing new LTA4H inhibitors.
Collapse
Affiliation(s)
- R Qin
- State Key Laboratory of Chemical Resource Engineering Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - H Wang
- State Key Laboratory of Chemical Resource Engineering Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - A Yan
- State Key Laboratory of Chemical Resource Engineering Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
3
|
Halim SA, Jawad M, Ilyas M, Mir Z, Mirza AA, Husnain T. In silico identification of novel IL-1β inhibitors to target protein–protein interfaces. Comput Biol Chem 2015; 58:158-66. [DOI: 10.1016/j.compbiolchem.2015.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 06/06/2015] [Accepted: 06/11/2015] [Indexed: 01/28/2023]
|