1
|
Zhang H, Tang J, Cao H, Wang C, Shen C, Liu J. Effect and mechanism of Magnolia officinalis in colorectal cancer: Multi-component-multi-target approach. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119007. [PMID: 39471878 DOI: 10.1016/j.jep.2024.119007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Colorectal cancer (CRC) is a prevalent malignant tumor of the digestive tract. Traditional Chinese medicine (TCM) has a long history of treating CRC, with advantages such as effectiveness, multi-target, multi-pathway, and minimal side effects. TCM Magnolia officinalis (M. officinalis) refers to the dried bark, root bark, and branch bark of either Magnolia officinalis Rehd.et Wils. or Magnolia officinalis Rehd.et Wils. var. biloba Rehd.et Wils. It is commonly utilized to alleviate the side effects of chemotherapy for CRC, owing to its anti-inflammatory and anti-tumor properties. However, current research primarily focuses on the individual components and does not take into consideration the characteristics of multi-component-multi-target action. AIM OF THE STUDY Our aim is to study the new action characteristics of M. officinalis in the treatment of CRC. MATERIALS AND METHODS Utilizing network pharmacology to identify potential active ingredients, key targets, and main signaling pathways of M. officinalis for the treatment of CRC. The binding effect was further validated through molecular docking analysis. Furthermore, the aforementioned components were identified using liquid chromatography-mass spectrometry (LC-MS), and the cleavage pathways of the main components were analyzed. Subsequently, both in vitro and in vivo experiments were carried out to investigate the anti-CRC effect of the active ingredients of M. officinalis and its potential mechanism. RESULTS Network pharmacology and Molecular docking identified 5 main active ingredients and 6 core targets of M. officinalis for the treatment of CRC. Then, LC-MS identified the active components of M. officinalis. At the same time, both in vitro and in vivo experiments have confirmed the ability of Eucalyptol (Euc) and Obovatol (Obo)to inhibit inflammation and tumor cell proliferation. The possible mechanism involved is that Euc and Obo counteract CRC by inhibiting the over-activation of NF-κBp65/JAK and Bcl-2/Caspase signaling pathways, respectively. They also play a role in the anti-CRC effect of M. officinalis. CONCLUSION Magnolol (MAG), Honokiol (HK), Euc, Obo, and Neohesperidin (NHP) in M. officinalis may be the pharmacological substance basis for its anti-cancer effect on CRC. The treatment of CRC with M. officinalis is characterized by its multi-component, multi-target, and multi-pathway approach. These findings provide a theoretical basis for further inspiring the clinical application of M. officinalis and the development of efficacy targets.
Collapse
Affiliation(s)
- He Zhang
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China
| | - Jun Tang
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China
| | - Huiliang Cao
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China
| | - Chenguang Wang
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China
| | - Chong Shen
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China.
| | - Jun Liu
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China.
| |
Collapse
|
2
|
Sciacca C, Cardullo N, Pulvirenti L, Travagliante G, D'Urso A, D'Agata R, Peri E, Cancemi P, Cornu A, Deffieux D, Pouységu L, Quideau S, Muccilli V. Synthesis of obovatol and related neolignan analogues as α-glucosidase and α-amylase inhibitors. Bioorg Chem 2024; 147:107392. [PMID: 38723423 DOI: 10.1016/j.bioorg.2024.107392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/18/2024]
Abstract
Diabetes mellitus is a metabolic disease characterized by hyperglycemia, which can be counteracted by the inhibition of α-glucosidase (α-Glu) and α-amylase (α-Amy), enzymes responsible for the hydrolysis of carbohydrates. In recent decades, many natural compounds and their bioinspired analogues have been studied as α-Glu and α-Amy inhibitors. However, no studies have been devoted to the evaluation of α-Glu and α-Amy inhibition by the neolignan obovatol (1). In this work, we report the synthesis of 1 and a library of new analogues. The synthesis of these compounds was achieved by implementing methodologies based on: phenol allylation, Claisen/Cope rearrangements, methylation, Ullmann coupling, demethylation, phenol oxidation and Michael-type addition. Obovatol (1) and ten analogues were evaluated for their in vitro inhibitory activity towards α-Glu and α-Amy. Our investigation highlighted that the naturally occurring 1 and four neolignan analogues (11, 22, 26 and 27) were more effective inhibitors than the hypoglycemic drug acarbose (α-Amy: 34.6 µM; α-Glu: 248.3 µM) with IC5O value of 6.2-23.6 µM toward α-Amy and 39.8-124.6 µM toward α-Glu. Docking investigations validated the inhibition outcomes, highlighting optimal compatibility between synthesized neolignans and both the enzymes. Concurrently circular dichroism spectroscopy detected the conformational changes in α-Glu induced by its interaction with the studied neolignans. Detailed studies through fluorescence measurements and kinetics of α-Glu and α-Amy inhibition also indicated that 1, 11, 22, 26 and 27 have the greatest affinity for α-Glu and 1, 11 and 27 for α-Amy. Surface plasmon resonance imaging (SPRI) measurements confirmed that among the compounds studied, the neolignan 27 has the greater affinity for both enzymes, thus corroborating the results obtained by kinetics and fluorescence quenching. Finally, in vitro cytotoxicity of the investigated compounds was tested on human colon cancer cell line (HCT-116). All these results demonstrate that these obovatol-based neolignan analogues constitute promising candidates in the pursuit of developing novel hypoglycemic drugs.
Collapse
Affiliation(s)
- Claudia Sciacca
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Luana Pulvirenti
- CNR-ICB, Consiglio Nazionale delle Ricerche-Istituto di Chimica Biomolecolare, via Paolo Gaifami 18, Catania 95126, Italy
| | - Gabriele Travagliante
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Alessandro D'Urso
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Roberta D'Agata
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Emanuela Peri
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy
| | - Patrizia Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy
| | - Anaëlle Cornu
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, Talence Cedex, France
| | - Denis Deffieux
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, Talence Cedex, France
| | - Laurent Pouységu
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, Talence Cedex, France
| | - Stéphane Quideau
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, Talence Cedex, France; Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France.
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
3
|
Lin X, Zhang H, Chu Y, Zhang Y, Xu C, Xie H, Ruan Q, Lin J, Huang C, Chai D. Honokiol ameliorates angiotensin II-induced cardiac hypertrophy by promoting dissociation of the Nur77-LKB1 complex and activating the AMPK pathway. J Cell Mol Med 2024; 28:e18028. [PMID: 37985436 PMCID: PMC10805491 DOI: 10.1111/jcmm.18028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023] Open
Abstract
Pathological cardiac hypertrophy is a key contributor to heart failure, and the molecular mechanisms underlying honokiol (HNK)-mediated cardioprotection against this condition remain worth further exploring. This study aims to investigate the effect of HNK on angiotensin II (Ang II)-induced myocardial hypertrophy and elucidate the underlying mechanisms. Sprague-Dawley rats were exposed to Ang II infusion, followed by HNK or vehicle treatment for 4 weeks. Our results showed that HNK treatment protected against Ang II-induced myocardial hypertrophy, fibrosis and dysfunction in vivo and inhibited Ang II-induced hypertrophy in neonatal rat ventricular myocytes in vitro. Mechanistically, HNK suppressed the Ang II-induced Nur77 expression at the transcriptional level and promoted ubiquitination-mediated degradation of Nur77, leading to dissociation of the Nur77-LKB1 complex. This facilitated the translocation of LKB1 into the cytoplasm and activated the LKB1-AMPK pathway. Our findings suggest that HNK attenuates pathological remodelling and cardiac dysfunction induced by Ang II by promoting dissociation of the Nur77-LKB1 complex and subsequent activation of AMPK signalling. This study uncovers a novel role of HNK on the LKB1-AMPK pathway to protect against cardiac hypertrophy.
Collapse
Affiliation(s)
- Xiaoyan Lin
- Echocardiological Department, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Hailin Zhang
- Cardiovascular Department, Fujian Institute of Hypertension, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Yong Chu
- Cardiovascular Department, Fujian Institute of Hypertension, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Yuze Zhang
- Cardiovascular Department, Fujian Institute of Hypertension, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Changsheng Xu
- Cardiovascular Department, Fujian Institute of Hypertension, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Hong Xie
- Cardiovascular Department, Fujian Institute of Hypertension, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Qinyun Ruan
- Echocardiological Department, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Jinxiu Lin
- Cardiovascular Department, Fujian Institute of Hypertension, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Chun‐Kai Huang
- Cardiovascular Department, Fujian Institute of Hypertension, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Dajun Chai
- Cardiovascular Department, Fujian Institute of Hypertension, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Cardiovascular Department, National Regional Medical Center, Binhai Branch of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| |
Collapse
|
4
|
Prasher P, Fatima R, Sharma M, Tynybekov B, Alshahrani AM, Ateşşahin DA, Sharifi-Rad J, Calina D. Honokiol and its analogues as anticancer compounds: Current mechanistic insights and structure-activity relationship. Chem Biol Interact 2023; 386:110747. [PMID: 37816447 DOI: 10.1016/j.cbi.2023.110747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/22/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023]
Abstract
Lignans are plant-derived polyphenolic compounds with a plethora of biological applications. Also, regarded as phytoestrogens, the lignans offer a variety of health benefits of which the anti-cancer effects are the most attractive. Honokiol is a lignan isolated from various parts of trees belonging to the genus Magnolia. The bioactivity of honokiol is attributed to its characteristic physical properties, which include small size and the presence of two phenolic groups that may interact with proteins in cell membranes via hydrophobic interactions, aromatic pi orbital co-valency, and hydrogen bonding. The hydrophobicity of honokiol enables its rapid dissolution in lipids and the crossing of physiological barriers, including the blood-brain barrier and cerebrospinal fluid. These factors contribute towards the high bioavailability of honokiol which further support its candidature in medicinal research. Therefore, the anticancer properties of honokiol are of particular interest as many of the contemporary anticancer drugs suffer from bioavailability drawbacks, which necessitates the identification and development of novel candidate molecules directed as anticancer chemotherapeutics. The antioncogenic profile of honokiol also arises from the regulation of various signalling pathways associated with oncogenesis, arresting of the cell cycle by regulation of cyclic proteins, upregulation of epithelial markers and downregulation of mesenchymal markers leading to the inhibition of epithelial-mesenchymal transition, and preventing the metastasis by restricting cell migration and invasion due to the downregulation of matrix-metalloproteinases. In this review, we discuss the anticancer properties of honokiol.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India.
| | - Rabab Fatima
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India.
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Arcadia Grant, Dehradun, 248007, India.
| | - Bekzat Tynybekov
- Al-Farabi Kazakh National University, Department of Biodiversity and Bioresources, Almaty, Kazakhstan.
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia.
| | - Dilek Arslan Ateşşahin
- Fırat University, Baskil Vocational School, Department of Plant and Animal Production, 23100, Elazıg, Turkey.
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
5
|
Li D, Luo F, Guo T, Han S, Wang H, Lin Q. Targeting NF-κB pathway by dietary lignans in inflammation: expanding roles of gut microbiota and metabolites. Crit Rev Food Sci Nutr 2022; 63:5967-5983. [PMID: 35068283 DOI: 10.1080/10408398.2022.2026871] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammation is a major factor affecting human health. Nuclear factor-kappa B (NF-κB) plays a vital role in the development of inflammation, and the promoters of most inflammatory cytokine genes have NF-κB-binding sites. Targeting NF-κB could be an exciting route for the prevention and treatment of inflammatory diseases. As important constituents of natural plants, lignans are proved to have numerous biological functions. There are growing pieces of evidence demonstrate that lignans have the potential anti-inflammatory activities. In this work, the type, structure and source of lignans and the influence on mitigating the inflammation are systematically summarized. This review focuses on the targeting NF-κB signaling pathway in the inflammatory response by different lignans and their molecular mechanisms. Lignans also regulate gut microflora and change gut microbial metabolites, which exert novel pathway to prevent NF-κB activation. Taken together, lignans target NF-κB with various mechanisms to inhibit inflammatory cytokine expressions in the inflammatory response. It will provide a scientific theoretical basis for further research on the anti-inflammatory effects of lignans and the development of functional foods.
Collapse
Affiliation(s)
- Dan Li
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Hanqing Wang
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
6
|
Nurcahyanti ADR, Jap A, Lady J, Prismawan D, Sharopov F, Daoud R, Wink M, Sobeh M. Function of selected natural antidiabetic compounds with potential against cancer via modulation of the PI3K/AKT/mTOR cascade. Biomed Pharmacother 2021; 144:112138. [PMID: 34750026 DOI: 10.1016/j.biopha.2021.112138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder with growing global incidence, as 387 million people were diagnosed in 2014 with an expected projection of 642 million in 2040. Several complications are associated with DM including heart attack, stroke, kidney failure, blindness, and cancer. The latter is the second leading cause of death worldwide accounting for one in every six deaths, with liver, pancreas, and endometrium cancers are the most abundant among patients with diabetes. Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway plays a vital role in developing a wide array of pathological disorders, among them diabetes and cancer. Natural secondary metabolites that counteract the deleterious effects of reactive oxygen species (ROS) and modulate PI3K/Akt/mTOR pathway could be a promising approach in cancer therapy. Here, 717 medicinal plants with antidiabetic activities were highlighted along with 357 bioactive compounds responsible for the antidiabetic activity. Also, 43 individual plant compounds with potential antidiabetic activities against cancer via the modulation of PI3K/Akt/mTOR cascade were identified. Taken together, the available data give an insight of the potential of repurposing medicinal plants and/or the individual secondary metabolites with antidiabetic activities for cancer therapy.
Collapse
Affiliation(s)
- Agustina Dwi Retno Nurcahyanti
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia.
| | - Adeline Jap
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Jullietta Lady
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Deka Prismawan
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, 14440 Jakarta, Indonesia
| | - Farukh Sharopov
- Chinese-Tajik Innovation Center for Natural Products, National Academy of Sciences of Tajikistan, Ayni str. 299/2, 734063, Dushanbe, Tajikistan
| | - Rachid Daoud
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Mansour Sobeh
- AgroBiosciences Research, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, 43150 Ben-Guerir, Morocco.
| |
Collapse
|
7
|
Zhu M, Li B, Ma H, Huang X, Wang H, Dai Y, Li Y, Li HM, Wu CZ. Synthesis and in vitro antitumor evaluation of honokiol derivatives. Bioorg Med Chem Lett 2019; 30:126849. [PMID: 31831382 DOI: 10.1016/j.bmcl.2019.126849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 11/29/2022]
Abstract
Honokiol is a natural bioactive neolignan and has been widely researched and structural modified as an anticancer agent. In this paper, 18 honokiol derivatives were synthesized and investigated for their antitumor activity. Among these, the promising compound 5a exhibited much higher anti-proliferative activity with IC50 value of 10.41 μM. Transwell assays showed that 5a could significantly inhibit the invasion and migration of I-10 cells at 2.5 μM, which was further confirmed by the western blotting experiments with down-regulation of the HIF-1α and its associated downstream proteins MMP-2 and MMP-9. Overall, these results provided useful suggestion for further structural optimization of honokiol derivatives.
Collapse
Affiliation(s)
- Meilin Zhu
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, Anhui, China
| | - Bohan Li
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, Anhui, China
| | - Hui Ma
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, Anhui, China
| | - Xuenan Huang
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, Anhui, China
| | - Haotian Wang
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, Anhui, China
| | - Yiqun Dai
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, Anhui, China
| | - Yu Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Hong-Mei Li
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, Anhui, China.
| | - Cheng-Zhu Wu
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, Anhui, China.
| |
Collapse
|
8
|
Neuraminidase 1 regulates proliferation, apoptosis and the expression of Cadherins in mammary carcinoma cells. Mol Cell Biochem 2019; 462:207-215. [DOI: 10.1007/s11010-019-03623-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022]
|
9
|
Li H, Zhang Q, Li W, Li H, Bao J, Yang C, Wang A, Wei J, Chen S, Jin H. Role of Nrf2 in the antioxidation and oxidative stress induced developmental toxicity of honokiol in zebrafish. Toxicol Appl Pharmacol 2019; 373:48-61. [DOI: 10.1016/j.taap.2019.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/14/2019] [Accepted: 04/19/2019] [Indexed: 12/31/2022]
|
10
|
Banik K, Ranaware AM, Deshpande V, Nalawade SP, Padmavathi G, Bordoloi D, Sailo BL, Shanmugam MK, Fan L, Arfuso F, Sethi G, Kunnumakkara AB. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol Res 2019; 144:192-209. [DOI: 10.1016/j.phrs.2019.04.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
|
11
|
Zhao H, Yan Y, Chai C, Zou LS, Liu XH, Wang SN, Hua YJ. Dynamic Changes of Eight Bioactive Constituents in Magnoliae Officinalis Cortex Based on UFLC-QTRAP-MS/MS Combined with Grey Relational Analysis. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412914666180903123749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Magnoliae Officinalis Cortex is a well-known traditional Chinese herbal medicine
with vast clinical consumption owing to its positive effects. However, little attention has been devoted
to analyzing the dynamic changes of the chemical constituents of Magnoliae Officinalis Cortex in
different growth periods.
Methods:
In this study, all analyses were performed on UFLC -20ADXR system and a SynergiTM
Hydro-RP 100 Å column (100 mm×2.0 mm, 2.5µm). The mobile phase consisted of water containing
0.1% formic acid (A) and acetonitrile containing 0.1% formic acid (B). The target constituents, including
two lignans, two alkaloids, two flavonoids, one phenylpropanoid glycoside, and one organic acid,
were analyzed in both positive and negative ion modes with accurate and sensitive multiple reaction
monitoring (MRM) mode.
Results:
The correlation coefficients of all the calibration curves were higher than 0.9992. Relative
standard deviations of intra- and inter-day precisions of the eight analytes were all lower than 4.01%
and the recoveries were in the range from 98.62% to 102.46%. Grey relational analysis was performed
to evaluate the samples according to the contents of 8 constituents. The results showed that the quality
of Magnoliae Officinalis Cortex collected at traditional harvest time was much better, and the higher the
age, the better the quality.
Conclusion:
The proposed method is useful for the assessment on the quality of Magnoliae Officinalis
Cortex, and this study provides the basis for exploring the quality forming mechanism of Magnoliae
Officinalis Cortex medicinal materials and choosing the suitable harvesting period.
Collapse
Affiliation(s)
- Hui Zhao
- Pharmacy College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Yan
- Pharmacy College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chuan Chai
- Pharmacy College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Li-Si Zou
- Pharmacy College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xun-hong Liu
- Pharmacy College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng-Nan Wang
- Pharmacy College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Jiao Hua
- Pharmacy College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Wang YX, Zhu N, Zhang CJ, Wang YK, Wu HT, Li Q, Du K, Liao DF, Qin L. Friend or foe: Multiple roles of adipose tissue in cancer formation and progression. J Cell Physiol 2019; 234:21436-21449. [PMID: 31054175 DOI: 10.1002/jcp.28776] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022]
Abstract
Obesity is well-known as the second factor for tumorigenesis after smoking and is bound up with the malignant progression of several kinds of cancers, including esophageal cancer, liver cancer, colorectal cancer, kidney cancer, and ovarian cancer. The increased morbidity and mortality of obesity-related cancer are mostly attributed to dysfunctional adipose tissue. The possible mechanisms connecting dysfunctional adipose tissue to high cancer risk mainly focus on chronic inflammation, obesity-related microenvironment, adipokine secretion disorder, and browning of adipose tissue, and so forth. The stromal vascular cells in adipose tissue trigger chronic inflammation through secreting inflammatory factors and promote cancer cell proliferation. Hypertrophic adipose tissues lead to metabolic disorders of adipocytes, such as abnormal levels of adipokines that mediate cancer progression and metastasis. Cancer patients often show adipose tissue browning and cancerous cachexia in an advanced stage, which lead to unsatisfied chemotherapy effect and poor prognosis. However, increasing evidence has shown that adipose tissue may display quite opposite effects in cancer development. Therefore, the interaction between cancers and adipose tissue exert a vital role in mediates adipose tissue dysfunction and further leads to cancer progression. In conclusion, targeting the dysfunction of adipose tissue provides a promising strategy for cancer prevention and therapy.
Collapse
Affiliation(s)
- Yu-Xiang Wang
- School of Pharmacy, Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chan-Juan Zhang
- School of Pharmacy, Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yi-Kai Wang
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia
| | - Hong-Tao Wu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qun Li
- Outpatient Department of Hanpu Campus, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ke Du
- School of Pharmacy, Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, Key Lab for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Li Qin
- School of Pharmacy, Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
13
|
Liu S, Li L, Tan L, Liang X. Inhibition of Herpes Simplex Virus-1 Replication by Natural Compound Honokiol. Virol Sin 2019; 34:315-323. [PMID: 30915606 DOI: 10.1007/s12250-019-00104-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/05/2019] [Indexed: 10/27/2022] Open
Abstract
Honokiol is a pleiotropic natural compound isolated from Magnolia and has multiple biological and clinically relevant effects, including anticancer and antimicrobial function. However, the antiviral activity of honokiol has not yet been well studied. Here we showed that honokiol had no effect on herpes simplex virus-1 (HSV-1) entry, but inhibited HSV-1 viral DNA replication, gene expression and the production of new progeny viruses. The combination of honokiol and clinical drug acyclovir augmented inhibition of HSV-1 infection. Our results illustrate that honokiol could be a potential new candidate for clinical consideration in the treatment of HSV-1 infection alone or combination with other therapeutics.
Collapse
Affiliation(s)
- Shuai Liu
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China.,Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai, 200031, China
| | - Long Li
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China.,Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai, 200031, China
| | - Lingbing Tan
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China.,Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai, 200031, China
| | - Xiaozhen Liang
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Shanghai, 200031, China.
| |
Collapse
|
14
|
Hsiao CH, Yao CJ, Lai GM, Lee LM, Whang-Peng J, Shih PH. Honokiol induces apoptotic cell death by oxidative burst and mitochondrial hyperpolarization of bladder cancer cells. Exp Ther Med 2019; 17:4213-4222. [PMID: 30988795 DOI: 10.3892/etm.2019.7419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
Bladder cancer is one of the most common types of malignant tumor worldwide. Current treatments, including chemo-/radiotherapy, only have limited efficacy on bladder cancer progression. Honokiol is an active component of Magnolia officinalis with multiple biological effects that may provide promising health benefits. In the present study, the anti-cancer properties of honokiol against bladder cancer cells were investigated by flow cytometric analysis. The results revealed that honokiol exhibited significant anti-proliferative effects on bladder cancer cell lines, particularly on BFTC-905 human transitional cell carcinoma cells. Furthermore, honokiol at low doses (≤25 µM) induced cell cycle arrest in G0/G1 phase, while it induced significant apoptotic cell death at high doses (≥50 µM; P<0.05). Furthermore, a significant accumulation of reactive oxygen species was identified in honokiol-treated cells. In addition, honokiol induced hyperpolarization of the mitochondrial membrane, which may lead to mitochondrial dysfunction. Finally, caspase-3/7 activation was identified in high-dose honokiol-treated bladder cancer cells. These results suggest that honokiol induces apoptosis via the mitochondrial pathway and honokiol-containing traditional herbal remedies may have a potential clinical application in the treatment of bladder cancer.
Collapse
Affiliation(s)
- Chi-Hao Hsiao
- Department of Urology, Wan Fang Hospital, Taipei 11696, Taiwan R.O.C.,Department of Urology, School of Medicine, College of Medicine, Taipei 11031, Taiwan R.O.C.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei 11031, Taiwan R.O.C
| | - Chih-Jung Yao
- Cancer Center, Wan Fang Hospital, Taipei 11696, Taiwan R.O.C.,Center of Excellence for Cancer Research, Taipei Medical University, Taipei 11031, Taiwan R.O.C
| | - Gi-Ming Lai
- Cancer Center, Wan Fang Hospital, Taipei 11696, Taiwan R.O.C.,Center of Excellence for Cancer Research, Taipei Medical University, Taipei 11031, Taiwan R.O.C
| | - Liang-Ming Lee
- Department of Urology, Wan Fang Hospital, Taipei 11696, Taiwan R.O.C.,Department of Urology, School of Medicine, College of Medicine, Taipei 11031, Taiwan R.O.C
| | - Jacqueline Whang-Peng
- Cancer Center, Wan Fang Hospital, Taipei 11696, Taiwan R.O.C.,Center of Excellence for Cancer Research, Taipei Medical University, Taipei 11031, Taiwan R.O.C
| | - Ping-Hsiao Shih
- Center for Cell Therapy, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan R.O.C
| |
Collapse
|
15
|
Onselaer MB, Nagy M, Pallini C, Pike JA, Perrella G, Quintanilla LG, Eble JA, Poulter NS, Heemskerk JWM, Watson SP. Comparison of the GPVI inhibitors losartan and honokiol. Platelets 2019; 31:187-197. [PMID: 30849265 PMCID: PMC7034533 DOI: 10.1080/09537104.2019.1585526] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Losartan and honokiol are small molecules which have been described to inhibit aggregation of platelets by collagen. Losartan has been proposed to block clustering of GPVI but not to affect binding of collagen. Honokiol has been reported to bind directly to GPVI but only at a concentration that is three orders of magnitude higher than that needed for inhibition of aggregation. The mechanism of action of both inhibitors is so far unclear. In the present study, we confirm the inhibitory effects of both agents on platelet aggregation by collagen and show that both also block the aggregation induced by the activation of CLEC-2 or the low affinity immune receptor FcγRIIa at similar concentrations. For GPVI and CLEC-2, this inhibition is associated with a reduction in protein tyrosine phosphorylation of multiple proteins including Syk. In contrast, on a collagen surface, spreading of platelets and clustering of GPVI (measured by single molecule localisation microscopy) was not altered by losartan or honokiol. Furthermore, in flow whole-blood, both inhibitors suppressed the formation of multi-layered platelet thrombi at arteriolar shear rates at concentrations that hardly affect collagen-induced platelet aggregation in platelet rich plasma. Together, these results demonstrate that losartan and honokiol have multiple effects on platelets which should be considered in the use of these compounds as anti-platelet agents.
Collapse
Affiliation(s)
- Marie-Blanche Onselaer
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Magdolna Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, MD, The Netherlands
| | - Chiara Pallini
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jeremy A Pike
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands
| | - Gina Perrella
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, MD, The Netherlands
| | - Lourdes Garcia Quintanilla
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Natalie S Poulter
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, MD, The Netherlands
| | - Steve P Watson
- Institute of Cardiovascular Sciences, IBR Building, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands
| |
Collapse
|
16
|
Lee JS, Sul JY, Park JB, Lee MS, Cha EY, Ko YB. Honokiol induces apoptosis and suppresses migration and invasion of ovarian carcinoma cells via AMPK/mTOR signaling pathway. Int J Mol Med 2019; 43:1969-1978. [PMID: 30864681 PMCID: PMC6443331 DOI: 10.3892/ijmm.2019.4122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 02/18/2019] [Indexed: 01/08/2023] Open
Abstract
Honokiol, a natural biphenolic compound, exerts anticancer effects through a variety of mechanisms on multiple types of cancer with relatively low toxicity. Adenosine 5'‑phosphate‑activated protein kinase (AMPK), an essential regulator of cellular homeostasis, may control cancer progression. The present study aimed to investigate whether the anticancer activities of honokiol in ovarian cancer cells were mediated through the activation of AMPK. Honokiol decreased cell viability of 2 ovarian cancer cell lines, with an half‑maximal inhibitory concentration value of 48.71±11.31 µM for SKOV3 cells and 46.42±5.37 µM for Caov‑3 cells. Honokiol induced apoptosis via activation of caspase‑3, caspase‑7 and caspase‑9, and cleavage of poly‑(adenosine 5'‑diphosphate‑ribose) polymerase. Apoptosis induced by honokiol was weakened by compound C, an AMPK inhibitor, suggesting that honokiol‑induced apoptosis was dependent on the AMPK/mechanistic target of rapamycin signaling pathway. Additionally, honokiol inhibited the migration and invasion of ovarian cancer cells. The combined treatment of honokiol with compound C reversed the activities of honokiol in wound healing and Matrigel invasion assays. These results indicated that honokiol may have therapeutic potential in ovarian cancer by targeting AMPK activation.
Collapse
Affiliation(s)
- Jin Sun Lee
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Ji Young Sul
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jun Beom Park
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Myung Sun Lee
- Surgical Oncology Research Laboratory, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Eun Young Cha
- Surgical Oncology Research Laboratory, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Young Bok Ko
- Research Institute for Medicinal Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
17
|
Wang X, Xiao D, Ma C, Zhang L, Duan Q, Zheng X, Mao M, Zhu D, Li Q. The effect of honokiol on pulmonary artery endothelium cell autophagy mediated by cyclophilin A in hypoxic pulmonary arterial hypertension. J Pharmacol Sci 2019; 139:158-165. [PMID: 30770282 DOI: 10.1016/j.jphs.2019.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/22/2018] [Accepted: 01/09/2019] [Indexed: 01/08/2023] Open
Abstract
Abnormal autophagy plays critical roles in the structure and function of the pulmonary vasculature. Cyclophilin A (CyPA) can be secreted from cells in response to hypoxia and oxidative stress, which are involved in inducing autophagy and regulating the function of endothelial cells in pulmonary arterial hypertension. Honokiol is a small molecule natural compound; it has many bioactivities, such as antitumor, anti-inflammatory, antioxidant and antiangiogenic properties, but how honokiol mediates autophagy in pulmonary arterial hypertension is unclear. Rat' lungs gavaged with honokiol were examined for autophagy via western blot and fluorescence microscopy. In addition, western blot, quantitative RT-PCR and immunofluorescence were employed to test the expression of CyPA and autophagy markers in pulmonary artery endothelial cells (PAECs). Small interfering RNA targeting CyPA (si-CyPA) was used to knockdown the expression of CyPA, and then autophagy was tested with mRFP-GFP-LC3 fluorescence microscopy and western blot. We found that honokiol could reduce the expression of CyPA and autophagy markers in vivo and in vitro. Furthermore, autophagy was also down-regulated by si-CyPA. Taken together, we revealed a novel mechanism by which honokiol regulates autophagy. The results revealed that honokiol can alleviate autophagy and pulmonary arterial hypertension regulated by CyPA in PAECs.
Collapse
Affiliation(s)
- Xiaoying Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| | - Dandan Xiao
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| | - Cui Ma
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, China; Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, China.
| | - Lixin Zhang
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, China; Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, China.
| | - Qingya Duan
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| | - Xiaodong Zheng
- Department of Pathophysiology, Harbin Medical University (Daqing), Daqing 163319, China.
| | - Min Mao
- Institute of Pathology and Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| | - Daling Zhu
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, China; College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Qian Li
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| |
Collapse
|
18
|
Yuan Y, Subedi L, Lim D, Jung JK, Kim SY, Seo SY. Synthesis and anti-neuroinflammatory activity of N-heterocyclic analogs based on natural biphenyl-neolignan honokiol. Bioorg Med Chem Lett 2018; 29:329-333. [PMID: 30472026 DOI: 10.1016/j.bmcl.2018.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
Novel isoxazole and pyrazole analogs based on natural biphenyl-neolignan honokiol were synthesized and evaluated for their inhibitory activities against nitric oxide production in lipopolysaccharide-activated BV-2 microglial cells. The isoxazole skeleton was constructed via nitrile oxide cycloaddition from oxime 3 and pyrazole was generated by condensation of 4-chromone and alkylhydrazine. Among the analogs, 13b and 14a showed stronger inhibitory activities with IC50 values of 8.9 and 1.2 µM, respectively, than honokiol.
Collapse
Affiliation(s)
- Yue Yuan
- College of Pharmacy, and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Lalita Subedi
- College of Pharmacy, and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Daesung Lim
- College of Pharmacy, and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Jae-Kyung Jung
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea.
| | - Seung-Yong Seo
- College of Pharmacy, and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea.
| |
Collapse
|
19
|
Kim D, Park W, Lee S, Kim W, Park SK, Kang KP. Absence of Sirt3 aggravates cisplatin nephrotoxicity via enhanced renal tubular apoptosis and inflammation. Mol Med Rep 2018; 18:3665-3672. [PMID: 30106119 PMCID: PMC6131565 DOI: 10.3892/mmr.2018.9350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 06/29/2018] [Indexed: 01/01/2023] Open
Abstract
Cisplatin‑based chemotherapy is commonly used in the treatment of solid tumors; however, this agent is limited by its adverse effects on normal tissues, including the kidneys, ears and peripheral nerves. Mechanisms of cisplatin nephrotoxicity are proposed to involve oxidative stress, inflammation, cellular apoptosis and cell cycle regulation. Sirtuin 3 (Sirt3) is a member of the sirtuin family of NAD+‑dependent enzymes with homology to Saccharomyces cerevisiae gene silent information regulator 2. Sirt3 is located in mitochondria and is involved in mitochondrial energy metabolism and function; however, the role of Sirt3 in cisplatin nephrotoxicity remains unclear. In the present study, whether Sirt3 has anti‑inflammatory and anti‑apoptotic effects on cisplatin‑induced nephrotoxicity was investigated in mice. Sirt3 knockout mice (Sirt3(‑/‑)) and corresponding wild type mice were employed in the present study. Cisplatin nephrotoxicity was induced by intraperitoneal injection of cisplatin (20 mg/kg). After 3 days following cisplatin treatment, blood and kidney tissues were harvested. Renal function and histology were evaluated. Tubular apoptosis, cell adhesion molecule expression, and inflammatory cells were evaluated by immunohistochemistry and western blot analysis. Following the induction of cisplatin nephrotoxicity, renal function was significantly aggravated in Sirt3 knockout (KO) mice. Tubular injury and inflammatory cell infiltration were significantly increased in Sirt3KO mice compared with wild type mice. Terminal deoxynucleotidyl transferase‑mediated dUTP nick‑end label‑positive tubular cells and renal monocyte chemoattractant protein‑1 expression levels were increased in Sirt3KO mice compared with in wild type mice. In summary, the absence of Sirt3 aggravated in renal injury by increasing renal inflammation and tubular apoptosis. The results of the present study suggested that Sirt3 may have an important role in cisplatin‑induced nephrotoxicity.
Collapse
Affiliation(s)
- Dal Kim
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Jeollabuk‑do 54907, Republic of Korea
| | - Woong Park
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Jeollabuk‑do 54907, Republic of Korea
| | - Sik Lee
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Jeollabuk‑do 54907, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Jeollabuk‑do 54907, Republic of Korea
| | - Sung Kwang Park
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Jeollabuk‑do 54907, Republic of Korea
| | - Kyung Pyo Kang
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Jeollabuk‑do 54907, Republic of Korea
| |
Collapse
|
20
|
Dai X, Li RZ, Jiang ZB, Wei CL, Luo LX, Yao XJ, Li GP, Leung ELH. Honokiol Inhibits Proliferation, Invasion and Induces Apoptosis Through Targeting Lyn Kinase in Human Lung Adenocarcinoma Cells. Front Pharmacol 2018; 9:558. [PMID: 29892225 PMCID: PMC5985435 DOI: 10.3389/fphar.2018.00558] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/10/2018] [Indexed: 01/01/2023] Open
Abstract
Honokiol is a natural compound with small molecular structure and extracted from bark of magnolia trees. The biological activities of honokiol include anti-oxidation, anti-inflammation as well as anti-tumor. However, their mechanism remains unknown. In this study, A549 cell line and EGFR-mutant cell line PC-9 with higher expression level of Lyn than A549 cells were used to assess the anti-tumor effects of honokiol. As shown in this study, honokiol is an effective drug on inhibiting proliferation and inducing apoptosis depended on Lyn and EGFR signal pathway regulated by Lyn, and its efficacy is stronger in PC-9 cells than A549 cells. In addition, this anti-tumor effect in PC-9 cells was weakened by Lyn-knockdown. Taken together, this study indicated the mechanism of honokiol on lung adenocarcinoma and provides a possibility of honokiol as an effective anti-tumor medicine.
Collapse
Affiliation(s)
- Xi Dai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.,Department of Respiratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Run-Ze Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Ze-Bo Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Chun-Li Wei
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Lian-Xiang Luo
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Guo-Ping Li
- Department of Respiratory Medicine, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Elaine L-H Leung
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| |
Collapse
|
21
|
Ma YL, Chen F, Shi J. Rhein inhibits malignant phenotypes of human renal cell carcinoma by impacting on MAPK/NF-κB signaling pathways. Onco Targets Ther 2018; 11:1385-1394. [PMID: 29559796 PMCID: PMC5857153 DOI: 10.2147/ott.s153798] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Rhein, an anthraquinone derivative of rhubarb, is traditionally used in Chinese herbal medicine. Now emerging studies suggest its antitumor properties in many human cancers. The present study aims to investigate the antitumor role of Rhein and its possible mechanism in human renal cell carcinoma (RCC). Materials and methods Three RCC cell lines (A489, 786-O and ACHN) were used as the cell models. We applied CCK-8, cell counting, colony formation, wound healing and Transwell assays to assess the antitumor roles of Rhein in RCC cells in vitro. The therapeutic efficacy of Rhein was further evaluated by intraperitoneal administrations in tumor formation of mice. Western blot was used to investigate the underlying mechanisms of action of Rhein. Results Rhein inhibited RCC cell proliferation in a dose- and time-dependent manner. It also suppressed RCC cell migration and invasion in vitro. Moreover, Rhein was able to inhibit tumor growth in nude mice by intraperitoneal administration in vivo. Mechanistically, the protein levels of phosphorylated MAPK (mitogen-activated protein kinase, extracellular signal-regulated kinase and c-Jun N-terminal kinase), phosphorylated Akt and two targets of NF-κB (nuclear factor kappa-light-chain enhancer of activated B cells) pathway, matrix metalloproteinase 9 and CCND1 were all markedly reduced by Rhein treatment. Conclusion Rhein processed the antitumor effects in RCC cells by inhibiting cell proliferation, migration and invasion, and these tumor-suppressing functions might be mediated by MAPK/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Ya-Li Ma
- Department of Nephrology, Huaihe Hospital Henan University, Kaifeng, People's Republic of China
| | - Fang Chen
- Department of Nephrology, Huaihe Hospital Henan University, Kaifeng, People's Republic of China
| | - Jun Shi
- Department of Nephrology, Huaihe Hospital Henan University, Kaifeng, People's Republic of China
| |
Collapse
|
22
|
Huang KJ, Kuo CH, Chen SH, Lin CY, Lee YR. Honokiol inhibits in vitro and in vivo growth of oral squamous cell carcinoma through induction of apoptosis, cell cycle arrest and autophagy. J Cell Mol Med 2018; 22:1894-1908. [PMID: 29363886 PMCID: PMC5824386 DOI: 10.1111/jcmm.13474] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/30/2017] [Indexed: 01/22/2023] Open
Abstract
Honokiol, an active natural product derived from Magnolia officinalis, exerted anticancer effects through a variety of mechanisms on multiple types of cancers. In this study, the molecular mechanisms of honokiol in suppressing the human oral squamous cell carcinoma (OSCC) cells were evaluated. Treatment of two OSCC cell lines with honokiol resulted in reducing the cell proliferation and arresting the cell cycle at G1 stage which was correlated with the down‐regulation of Cdk2 and Cdk4 and the up‐regulation of cell cycle suppressors, p21 and p27. In addition, the caspase‐dependent programmed cell death was substantially detected, and the autophagy was induced as the autophagosome formation and autophagic flux proceeded. Modulation of autophagy by autophagic inducer, rapamycin or inhibitors, 3‐MA or bafilomycin, potentiated the honokiol‐mediated anti‐OSCC effects where honokiol exerted multiple actions in suppression of MAPK pathway and regulation of Akt/mTOR or AMPK pathways. As compared to clinical therapeutic agent, 5‐FU, honokiol exhibited more potent activity against OSCC cells and synergistically enhanced the cytotoxic effect of 5‐FU. Furthermore, orally administrated honokiol exerted effective antitumour activity in vivo in OSCC‐xenografted mice. Thus, this study revealed that honokiol could be a promising candidate in preventing human OSCCs.
Collapse
Affiliation(s)
- Kao-Jean Huang
- Development Center for Biotechnology, Institute of Biologics, New Taipei City, Taiwan
| | - Chin-Ho Kuo
- Division of Hematology-Oncology and Blood Bank, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Shu-Hsin Chen
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Ching-Yen Lin
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Ying-Ray Lee
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan.,Department of Nursing, Min-Hwei College of Health Care Management, Tainan, Taiwan
| |
Collapse
|
23
|
Jiao L, Bi L, Lu Y, Wang Q, Gong Y, Shi J, Xu L. Cancer chemoprevention and therapy using chinese herbal medicine. Biol Proced Online 2018; 20:1. [PMID: 29321719 PMCID: PMC5757296 DOI: 10.1186/s12575-017-0066-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022] Open
Abstract
Traditional Chinese medicine (TCM) plays an indispensable role in cancer prevention and treatment. Chinese herbal medicine (CHM) is a key component of TCM and has been practiced for thousands of years. A number of naturally occurring products from Chinese herbs extracts exhibit strong inhibitory properties against carcinogenesis, including CHM single-herb extracts, CHM-derived active components, and CHM formulas (the polyherbal combinations), which regulate JAK/STAT, MAPK, and NF-ҡB pathways. The present review aims to report the cancer-preventive effect of CHM with evidence from cell-line, animal, epidemiological, and clinical experiments. We also present several issues that have yet to be resolved. In the future, cancer prevention by CHM will face unprecedented opportunities and challenges.
Collapse
Affiliation(s)
- Lijing Jiao
- Institute of Clinical Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 China.,Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Hongkou District, Shanghai, 200437 China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Hongkou District, Shanghai, 200437 China
| | - Yan Lu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Hongkou District, Shanghai, 200437 China
| | - Qin Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Hongkou District, Shanghai, 200437 China
| | - Yabin Gong
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Hongkou District, Shanghai, 200437 China
| | - Jun Shi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Hongkou District, Shanghai, 200437 China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Hongkou District, Shanghai, 200437 China
| |
Collapse
|
24
|
Sun W, Kim TS, Choi NS, Seo SY. Synthesis of 1,2,3-Triazole and Pyrazole Analogues as Bioisosteres of Biphenyl-Neolignans. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Wei Sun
- College of Pharmacy; Gachon University; Incheon 21936 Republic of Korea
| | - Taek-Soo Kim
- College of Pharmacy; Gachon University; Incheon 21936 Republic of Korea
| | - Nam Song Choi
- College of Interdisciplinary & Creative Studies; Konyang University; Nonsan 32992 Republic of Korea
| | - Seung-Yong Seo
- College of Pharmacy; Gachon University; Incheon 21936 Republic of Korea
| |
Collapse
|
25
|
Wang Y, Zhao D, Sheng J, Lu P. Local honokiol application inhibits intimal thickening in rabbits following carotid artery balloon injury. Mol Med Rep 2017; 17:1683-1689. [PMID: 29257208 PMCID: PMC5780111 DOI: 10.3892/mmr.2017.8076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 07/24/2017] [Indexed: 01/10/2023] Open
Abstract
Honokiol is a natural bioactive product with anti-tumor, anti-inflammatory, anti-oxidative, anti-angiogenic and neuroprotective properties. The present study aimed to investigate the effects of honokiol treatment on intimal thickening following vascular balloon injury. The current study determined that perivascular honokiol application reduced intimal thickening in rabbits 14 days after carotid artery injury, it may inhibit vascular smooth muscle cell (VSMCs) proliferation and reduce collagen deposition in local arteries. The findings of the presents study also suggested that honikiol may increase the mRNA expression levels of matrix metalloproteinase‑1 (MMP‑1), MMP‑2 and MMP‑9 and decrease tissue inhibitor of metalloproteinase‑1 (TIMP‑1) mRNA expression in the rabbit arteries. Additionally, perivascular honokiol application inhibited intimal thickening, possibly via inhibition of the phosphorylation of SMAD family member 2/3.
Collapse
Affiliation(s)
- Yu Wang
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Danyang Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Jing Sheng
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Ping Lu
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
26
|
Poivre M, Duez P. Biological activity and toxicity of the Chinese herb Magnolia officinalis Rehder & E. Wilson (Houpo) and its constituents. J Zhejiang Univ Sci B 2017; 18:194-214. [PMID: 28271656 DOI: 10.1631/jzus.b1600299] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Traditional Chinese herbal drugs have been used for thousands of years in Chinese pharmacopoeia. The bark of Magnolia officinalis Rehder & E. Wilson, known under the pinyin name "Houpo", has been traditionally used in Chinese and Japanese medicines for the treatment of anxiety, asthma, depression, gastrointestinal disorders, headache, and more. Moreover, Magnolia bark extract is a major constituent of currently marketed dietary supplements and cosmetic products. Much pharmacological activity has been reported for this herb and its major compounds, notably antioxidant, anti-inflammatory, antibiotic and antispasmodic effects. However, the mechanisms underlying this have not been elucidated and only a very few clinical trials have been published. In vitro and in vivo toxicity studies have also been published and indicate some intriguing features. The present review aims to summarize the literature on M. officinalis bark composition, utilisation, pharmacology, and safety.
Collapse
Affiliation(s)
- Mélanie Poivre
- Unit of Therapeutic Chemistry and Pharmacognosy, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons-UMONS, Mons, Belgium
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons-UMONS, Mons, Belgium
| |
Collapse
|
27
|
He Q, Yin H, Jiang J, Bai Y, Chen N, Liu S, Zhuang Y, Liu T. Fermentative Production of Phenolic Glucosides by Escherichia coli with an Engineered Glucosyltransferase from Rhodiola sachalinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4691-4697. [PMID: 28547990 DOI: 10.1021/acs.jafc.7b00981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Three rosmarinic acid analogs produced by recombinant Escherichia coli, two xanthones from fungi and honokiol from plants, were explored as the substrates of E. coli harboring a glucosyltransferase mutant UGT73B6FS to generate phenolic glucosides. Six new and two known compounds were isolated from the fermentation broth of the recombinant strain of the feeding experiments, and the compounds were identified by spectroscopy. The biotransformation of rosmarinic acid analogs and xanthones into corresponding glucosides was presented for the first time. This study not only demonstrated the substrate flexibility of the glucosyltransferase mutant UGT73B6FS toward aromatic alcohols but also provided an effective and economical method to produce phenolic glucosides by fermentation circumventing the use of expensive precursor UDP-glucose.
Collapse
Affiliation(s)
- Qinglin He
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science and Technology , Tianjin 300457, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Hua Yin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Jingjie Jiang
- College of Biotechnology, the State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Yanfen Bai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Ning Chen
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Shaowei Liu
- College of Biotechnology, the State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Yibin Zhuang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| | - Tao Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences , Tianjin 300308, China
| |
Collapse
|
28
|
Luo LX, Li Y, Liu ZQ, Fan XX, Duan FG, Li RZ, Yao XJ, Leung ELH, Liu L. Honokiol Induces Apoptosis, G1 Arrest, and Autophagy in KRAS Mutant Lung Cancer Cells. Front Pharmacol 2017; 8:199. [PMID: 28443025 PMCID: PMC5387050 DOI: 10.3389/fphar.2017.00199] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/27/2017] [Indexed: 12/19/2022] Open
Abstract
Aberrant signaling transduction induced by mutant KRAS proteins occurs in 20∼30% of non-small cell lung cancer (NSCLC), however, a direct and effective pharmacological inhibitor targeting KRAS has not yet reached the clinic to date. Honokiol, a small molecular polyphenol natural biophenolic compound derived from the bark of magnolia trees, exerts anticancer activity, however, its mechanism remains unknown. In this study, we sought to investigate the in vitro effects of honokiol on NSCLC cell lines harboring KRAS mutations. Honokiol was shown to induce G1 arrest and apoptosis to inhibit the growth of KRAS mutant lung cancer cells, which was weakened by an autophagy inhibitor 3-methyladenine (3-MA), suggesting a pro-apoptotic role of honokiol-induced autophagy that was dependent on AMPK-mTOR signaling pathway. In addition, we also discovered that Sirt3 was significantly up-regulated in honokiol treated KRAS mutant lung cancer cells, leading to destabilization of its target gene Hif-1α, which indicated that the anticancer property of honokiol maybe regulated via a novel mechanism associated with the Sirt3/Hif-1α. Taken together, these results broaden our understanding of the mechanisms on honokiol effects in lung cancer, and reinforce the possibility of its potential anticancer benefit as a popular Chinese herbal medicine (CHM).
Collapse
Affiliation(s)
- Lian-Xiang Luo
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and TechnologyMacau, China
| | - Ying Li
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and TechnologyMacau, China
| | - Zhong-Qiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese MedicineGuangzhou, China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and TechnologyMacau, China
| | - Fu-Gang Duan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and TechnologyMacau, China
| | - Run-Ze Li
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and TechnologyMacau, China
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and TechnologyMacau, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and TechnologyMacau, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and TechnologyMacau, China
| |
Collapse
|
29
|
Prakasha Gowda AS, Suo Z, Spratt TE. Honokiol Inhibits DNA Polymerases β and λ and Increases Bleomycin Sensitivity of Human Cancer Cells. Chem Res Toxicol 2017; 30:715-725. [PMID: 28067485 PMCID: PMC5665024 DOI: 10.1021/acs.chemrestox.6b00451] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A major concept to sensitize cancer cells to DNA damaging agents is by inhibiting proteins in the DNA repair pathways. X-family DNA polymerases play critical roles in both base excision repair (BER) and nonhomologous end joining (NHEJ). In this study, we examined the effectiveness of honokiol to inhibit human DNA polymerase β (pol β), which is involved in BER, and DNA polymerase λ (pol λ), which is involved in NHEJ. Kinetic analysis with purified polymerases showed that honokiol inhibited DNA polymerase activity. The inhibition mode for the polymerases was a mixed-function noncompetitive inhibition with respect to the substrate, dCTP. The X-family polymerases, pol β and pol λ, were slightly more sensitive to inhibition by honokiol based on the Ki value of 4.0 μM for pol β, and 8.3 μM for pol λ, while the Ki values for pol η and Kf were 20 and 26 μM, respectively. Next we extended our studies to determine the effect of honokiol on the cytotoxicity of bleomycin and temozolomide in human cancer cell lines A549, MCF7, PANC-1, UACC903, and normal blood lymphocytes (GM12878). Bleomycin causes both single strand DNA damage that is repaired by BER and double strand breaks that are repaired by NHEJ, while temozolomide causes methylation damage repaired by BER and O6-alkylguanine-DNA alkyltransferase. The greatest effects were found with the honokiol and bleomycin combination in MCF7, PANC-1, and UACC903 cells, in which the EC50 values were decreased 10-fold. The temozolomide and honokiol combination was less effective; the EC50 values decreased three-fold due to the combination. It is hypothesized that the greater effect of honokiol on bleomycin is due to inhibition of the repair of the single strand and double strand damage. The synergistic activity shown by the combination of bleomycin and honokiol suggests that they can be used as combination therapy for treatment of cancer, which will decrease the therapeutic dosage and side effects of bleomycin.
Collapse
Affiliation(s)
- A. S. Prakasha Gowda
- Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas E. Spratt
- Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
30
|
Koentges C, Bode C, Bugger H. SIRT3 in Cardiac Physiology and Disease. Front Cardiovasc Med 2016; 3:38. [PMID: 27790619 PMCID: PMC5061741 DOI: 10.3389/fcvm.2016.00038] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022] Open
Abstract
Functional defects in mitochondrial biology causally contribute to various human diseases, including cardiovascular disease. Impairment in oxidative phosphorylation, mitochondrial oxidative stress, and increased opening of the mitochondrial permeability transition pore add to the underlying mechanisms of heart failure or myocardial ischemia–reperfusion (IR) injury. Recent evidence demonstrated that the mitochondrial NAD+-dependent deacetylase sirtuin 3 (SIRT3) may regulate these mitochondrial functions by reversible protein lysine deacetylation. Loss of function studies demonstrated a role of impaired SIRT3 activity in the pathogenesis of myocardial IR injury as well as in the development of cardiac hypertrophy and the transition into heart failure. Gain of function studies and treatment approaches increasing mitochondrial NAD+ availability that ameliorate these cardiac pathologies have led to the proposal that activation of SIRT3 may represent a promising therapeutic strategy to improve mitochondrial derangements in various cardiac pathologies. In the current review, we will present and discuss the available literature on the role of SIRT3 in cardiac physiology and disease.
Collapse
Affiliation(s)
- Christoph Koentges
- Division of Cardiology and Angiology I, Heart Center Freiburg University , Freiburg , Germany
| | - Christoph Bode
- Division of Cardiology and Angiology I, Heart Center Freiburg University , Freiburg , Germany
| | - Heiko Bugger
- Division of Cardiology and Angiology I, Heart Center Freiburg University , Freiburg , Germany
| |
Collapse
|
31
|
Thulasiraman P, Johnson AB. Regulation of Mucin 1 and multidrug resistance protein 1 by honokiol enhances the efficacy of doxorubicin-mediated growth suppression in mammary carcinoma cells. Int J Oncol 2016; 49:479-86. [PMID: 27221150 PMCID: PMC4922838 DOI: 10.3892/ijo.2016.3534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/06/2016] [Indexed: 01/16/2023] Open
Abstract
Understanding the link between chemoresistance and cancer progression may identify future targeted therapy for breast cancer. One of the mechanisms by which chemoresistance is attained in cancer cells is mediated through the expression of multidrug resistance proteins (MRPs). Acquiring drug resistance has been correlated to the emergence of metastasis, accounting for the progression of the disease. One of the diagnostic markers of metastatic progression is the overexpression of a transmembrane protein called Mucin 1 (MUC1) which has been implicated in reduced survival rate. The objective of this study was to understand the relationship between MUC1 and MRP1 using natural phenolic compound isolated from Magnolia grandiflora, honokiol, in mammary carcinoma cells. We provide evidence that honokiol suppresses the expression level of MUC1 and MRP1 in mammary carcinoma cells. In a time-dependent manner, honokiol-mediated reduction of MUC1 is followed by a reduction of MRP1 expression in the breast cancer cells. Additionally, silencing MUC1 suppresses the expression level of MRP1 and enhances the efficacy of doxorubicin, an MRP1 substrate. Taken together, these findings suggest MUC1 regulates the expression of MRP1 and provides a direct link between cancer progression and chemoresistance in mammary carcinoma cells.
Collapse
Affiliation(s)
- Padmamalini Thulasiraman
- Department of Biomedical Sciences, College of Allied Health, University of South Alabama, Mobile, AL 36688, USA
| | - Andrea Butts Johnson
- Department of Biomedical Sciences, College of Allied Health, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
32
|
Subhani S, Vavilala DT, Mukherji M. HIF inhibitors for ischemic retinopathies and cancers: options beyond anti-VEGF therapies. Angiogenesis 2016; 19:257-73. [DOI: 10.1007/s10456-016-9510-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/16/2016] [Indexed: 12/15/2022]
|
33
|
Hu H, Wang Z, Hua W, You Y, Zou L. Effect of Chemical Profiling Change of ProcessedMagnolia officinalison the Pharmacokinetic Profiling of Honokiol and Magnolol in Rats. J Chromatogr Sci 2016; 54:1201-12. [DOI: 10.1093/chromsci/bmw052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 02/06/2023]
|
34
|
Xie L, Jiang F, Zhang X, Alitongbieke G, Shi X, Meng M, Xu Y, Ren A, Wang J, Cai L, Zhou Y, Xu Y, Su Y, Liu J, Zeng Z, Wang G, Zhou H, Chen QC, Zhang XK. Honokiol sensitizes breast cancer cells to TNF-α induction of apoptosis by inhibiting Nur77 expression. Br J Pharmacol 2015; 173:344-56. [PMID: 26505879 DOI: 10.1111/bph.13375] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 10/01/2015] [Accepted: 10/13/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The orphan nuclear receptor Nur77 is implicated in the survival and apoptosis of cancer cells. The purpose of this study was to determine whether and how Nur77 serves to mediate the effect of the inflammatory cytokine TNF-α in cancer cells and to identify and characterize new agents targeting Nur77 for cancer therapy. EXPERIMENTAL APPROACH The effects of TNF-α on the expression and function of Nur77 were studied using in vitro and in vivo models. Nur77 expression was evaluated in tumour tissues from breast cancer patients. The anticancer effects of honokiol and its mechanism of action were assessed by in vitro, cell-based and animal studies. KEY RESULTS TNF-α rapidly and potently induced the expression of Nur77 in breast cancer cells through activation of IκB kinase and JNK. Knocking down Nur77 resulted in TNF-α-dependent apoptosis, while ectopic Nur77 expression in MCF-7 cells promoted their growth in animals. Levels of Nur77 were higher in tumour tissues than the corresponding tissues surrounding the tumour in about 50% breast cancer patients studied. Our in vitro and animal studies also identified honokiol as an effective sensitizer of TNF-α-induced apoptosis by inhibiting TNF-α-induced Nur77 mRNA expression, which could be attributed to its interference of TNFR1's interaction with receptor-interacting protein 1 (RIPK1). CONCLUSIONS AND IMPLICATIONS TNF-α-induced Nur77 serves as a survival factor to attenuate the death effect of TNF-α in cancer cells. With its proven human safety profile, honokiol represents a promising agent that warrants further clinical development.
Collapse
Affiliation(s)
- Lei Xie
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Fuquan Jiang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xindao Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | | | - Xinlei Shi
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - MinJun Meng
- Zhongshan Hospital, Xiamen University, Xiamen, 361102, China
| | - Yiming Xu
- Zhongshan Hospital, Xiamen University, Xiamen, 361102, China
| | - Anshi Ren
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Jing Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Lijun Cai
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yunxia Zhou
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yang Xu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Ying Su
- Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, 92037, USA
| | - Jie Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Guanghui Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Quan Cheng Chen
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.,Sanford Burnham Prebys Medical Discovery Institute Cancer Center, La Jolla, CA, 92037, USA
| |
Collapse
|
35
|
Yu Y, Li M, Su N, Zhang Z, Zhao H, Yu H, Xu Y. Honokiol protects against renal ischemia/reperfusion injury via the suppression of oxidative stress, iNOS, inflammation and STAT3 in rats. Mol Med Rep 2015; 13:1353-60. [PMID: 26647858 DOI: 10.3892/mmr.2015.4660] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 10/06/2015] [Indexed: 11/05/2022] Open
Abstract
Honokiol is the predominant active ingredient in the commonly used traditional Chinese medicine, Magnolia, which has been confirmed in previous studies to exhibit anti-oxidation, antimicrobial, antitumor and other pharmacological effects. However, its effects on renal ischemia/reperfusion injury (IRI) remain to be elucidated. The present study aimed to examine the effects of honokiol on renal IRI, and to investigate its potential protective mechanisms in the heart. Male adult Wistar albino rats were induced into a renal IRI model. Subsequently, the levels of serum creatinine, blood urea nitrogen (BUN), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP), and the levels of serum nitrite and the kidney nitrite were examined in the IRI group. The levels of oxidative stress, inducible nitric oxide synthase (iNOS), inflammatory factors and caspase-3 were evaluated using a series of commercially available kits. The levels of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) and the protein expression levels of STAT3 were determined using western blotting. Pretreatment with honokiol significantly reduced the levels of serum creatinine, BUN, ALT, AST and ALP, and the level of nitrite in the kidney of the IRI group, compared with the control group. The levels of malondialdehyde, the activity of myeloperoxidase, and the gene expression and activity of iNOS were reduced in the IRI rats, compared with the sham-operated rats, whereas the levels of superoxide dismutase and catalase were increased following treatment with honokiol in the IRI rats. In addition, the expression levels of tumor necrosis factor-α and interleukin-6 in the IRI rats were increased by honokiol. Treatment with honokiol suppressed the protein expression levels of p-STAT3 and caspase-3 in the IRI rats. These findings indicated that honokiol protects against renal IRI via the suppression of oxidative stress, iNOS, inflammation and STAT3 in the rat.
Collapse
Affiliation(s)
- Yongwu Yu
- Department of Nephrology, Navy General Hospital of Chinese People's Liberation Army, Beijing 100048, P.R. China
| | - Mingxv Li
- Department of Nephrology, Navy General Hospital of Chinese People's Liberation Army, Beijing 100048, P.R. China
| | - Ning Su
- Department of Nephrology, Navy General Hospital of Chinese People's Liberation Army, Beijing 100048, P.R. China
| | - Zhiyong Zhang
- Department of Nephrology, Navy General Hospital of Chinese People's Liberation Army, Beijing 100048, P.R. China
| | - Haidan Zhao
- Department of Nephrology, Navy General Hospital of Chinese People's Liberation Army, Beijing 100048, P.R. China
| | - Hai Yu
- Department of Nephrology, Navy General Hospital of Chinese People's Liberation Army, Beijing 100048, P.R. China
| | - Yingluan Xu
- Department of Nephrology, Navy General Hospital of Chinese People's Liberation Army, Beijing 100048, P.R. China
| |
Collapse
|
36
|
Starok M, Preira P, Vayssade M, Haupt K, Salomé L, Rossi C. EGFR Inhibition by Curcumin in Cancer Cells: A Dual Mode of Action. Biomacromolecules 2015; 16:1634-42. [PMID: 25893361 DOI: 10.1021/acs.biomac.5b00229] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Epidermal Growth Factor Receptor (EGFR) is an important target of anticancer therapy. Nowadays, the search for new molecules inhibiting this receptor is turning toward natural substances. One of the most promising natural compounds that have shown an anti-EGFR activity is curcumin, a polyphenol found in turmeric. Its effect on the receptor kinase activity and on the receptor autophosphorylation has been already described, but the mechanism of how curcumin interacts with EGFR is not fully elucidated. We demonstrate that the mode of action of curcumin is dual. This polyphenol is able to inhibit directly but partially the enzymatic activity of the EGFR intracellular domain. The present work shows that curcumin also influences the cell membrane environment of EGFR. Using biomimetic membrane models, we show that curcumin insertion into the lipid bilayer leads to its rigidification. Single particle tracking analyses performed in the membrane of A431 cancer cells confirmed that this effect of curcumin on the membrane slows down the receptor diffusion. This is likely to affect the receptor dimerization and, in turn, its activation.
Collapse
Affiliation(s)
- Marcelina Starok
- †Sorbonne Universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie Enzymatique et Cellulaire, Rue Roger Couttolenc, CS 60319, F-60203 Compiègne Cedex, France
| | - Pascal Preira
- ‡CNRS; Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, F-31077 Toulouse, France.,§Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Muriel Vayssade
- ∥Sorbonne Universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Biomécanique et Bioingénierie, Rue Roger Couttolenc, CS 60319, F-60203 Compiègne Cedex, France
| | - Karsten Haupt
- †Sorbonne Universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie Enzymatique et Cellulaire, Rue Roger Couttolenc, CS 60319, F-60203 Compiègne Cedex, France
| | - Laurence Salomé
- ‡CNRS; Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, F-31077 Toulouse, France.,§Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France
| | - Claire Rossi
- †Sorbonne Universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie Enzymatique et Cellulaire, Rue Roger Couttolenc, CS 60319, F-60203 Compiègne Cedex, France
| |
Collapse
|
37
|
Grant-Overton S, Buss JA, Smith EH, Gutierrez EG, Moorhead EJ, Lin VS, Wenzel AG. Efficient Microwave Method for the Oxidative Coupling of Phenols. SYNTHETIC COMMUN 2014. [DOI: 10.1080/00397911.2014.956370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Cho YY, Jeong HU, Kim JH, Lee HS. Effect of honokiol on the induction of drug-metabolizing enzymes in human hepatocytes. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:2137-45. [PMID: 25395831 PMCID: PMC4224024 DOI: 10.2147/dddt.s72305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Honokiol, 2-(4-hydroxy-3-prop-2-enyl-phenyl)-4-prop-2-enyl-phenol, an active component of Magnolia officinalis and Magnolia grandiflora, exerts various pharmacological activities such as antitumorigenic, antioxidative, anti-inflammatory, neurotrophic, and antithrombotic effects. To investigate whether honokiol acts as a perpetrator in drug interactions, messenger ribonucleic acid (mRNA) levels of phase I and II drug-metabolizing enzymes, including cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT), and sulfotransferase 2A1 (SULT2A1), were analyzed by real-time reverse transcription polymerase chain reaction following 48-hour honokiol exposure in three independent cryopreserved human hepatocyte cultures. Honokiol treatment at the highest concentration tested (50 μM) increased the CYP2B6 mRNA level and CYP2B6-catalyzed bupropion hydroxylase activity more than two-fold in three different hepatocyte cultures, indicating that honokiol induces CYP2B6 at higher concentrations. However, honokiol treatment (0.5–50 μM) did not significantly alter the mRNA levels of phase I enzymes (CYP1A2, CYP3A4, CYP2C8, CYP2C9, and CYP2C19) or phase II enzymes (UGT1A1, UGT1A4, UGT1A9, UGT2B7, and SULT2A1) in cryopreserved human hepatocyte cultures. CYP1A2-catalyzed phenacetin O-deethylase and CYP3A4-catalyzed midazolam 1′-hydroxylase activities were not affected by 48-hour honokiol treatment in cryopreserved human hepatocytes. These results indicate that honokiol is a weak CYP2B6 inducer and is unlikely to increase the metabolism of concomitant CYP2B6 substrates and cause pharmacokinetic-based drug interactions in humans.
Collapse
Affiliation(s)
- Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Hyeon-Uk Jeong
- College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Jeong-Han Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Hye Suk Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| |
Collapse
|
39
|
Scheepstra M, Nieto L, Hirsch AKH, Fuchs S, Leysen S, Lam CV, in het Panhuis L, van Boeckel CAA, Wienk H, Boelens R, Ottmann C, Milroy L, Brunsveld L. A Natural‐Product Switch for a Dynamic Protein Interface. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Marcel Scheepstra
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands) http://www.tue.nl/cb
| | - Lidia Nieto
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands) http://www.tue.nl/cb
| | - Anna K. H. Hirsch
- Stratingh Institue for Chemistry, University of Groningen, Nijenborgh 7, 9747AG Groningen (The Netherlands)
| | - Sascha Fuchs
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands) http://www.tue.nl/cb
| | - Seppe Leysen
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands) http://www.tue.nl/cb
| | - Chan Vinh Lam
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands) http://www.tue.nl/cb
| | - Leslie in het Panhuis
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands) http://www.tue.nl/cb
| | - Constant A. A. van Boeckel
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands) http://www.tue.nl/cb
| | - Hans Wienk
- Bijvoet Center for Biomolecular Research, NMR Spectroscopy, Utrecht University, Padualaan 8, 3584CH Utrecht (The Netherlands)
| | - Rolf Boelens
- Bijvoet Center for Biomolecular Research, NMR Spectroscopy, Utrecht University, Padualaan 8, 3584CH Utrecht (The Netherlands)
| | - Christian Ottmann
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands) http://www.tue.nl/cb
| | - Lech‐Gustav Milroy
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands) http://www.tue.nl/cb
| | - Luc Brunsveld
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands) http://www.tue.nl/cb
| |
Collapse
|
40
|
Scheepstra M, Nieto L, Hirsch AKH, Fuchs S, Leysen S, Lam CV, in het Panhuis L, van Boeckel CAA, Wienk H, Boelens R, Ottmann C, Milroy LG, Brunsveld L. A natural-product switch for a dynamic protein interface. Angew Chem Int Ed Engl 2014; 53:6443-8. [PMID: 24821627 DOI: 10.1002/anie.201403773] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Indexed: 01/11/2023]
Abstract
Small ligands are a powerful way to control the function of protein complexes via dynamic binding interfaces. The classic example is found in gene transcription where small ligands regulate nuclear receptor binding to coactivator proteins via the dynamic activation function 2 (AF2) interface. Current ligands target the ligand-binding pocket side of the AF2. Few ligands are known, which selectively target the coactivator side of the AF2, or which can be selectively switched from one side of the interface to the other. We use NMR spectroscopy and modeling to identify a natural product, which targets the retinoid X receptor (RXR) at both sides of the AF2. We then use chemical synthesis, cellular screening and X-ray co-crystallography to split this dual activity, leading to a potent and molecularly efficient RXR agonist, and a first-of-kind inhibitor selective for the RXR/coactivator interaction. Our findings justify future exploration of natural products at dynamic protein interfaces.
Collapse
Affiliation(s)
- Marcel Scheepstra
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven (The Netherlands) http://www.tue.nl/cb
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Li W, Wang Q, Su Q, Ma D, An C, Ma L, Liang H. Honokiol suppresses renal cancer cells' metastasis via dual-blocking epithelial-mesenchymal transition and cancer stem cell properties through modulating miR-141/ZEB2 signaling. Mol Cells 2014; 37:383-8. [PMID: 24810210 PMCID: PMC4044309 DOI: 10.14348/molcells.2014.0009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/30/2014] [Accepted: 03/31/2014] [Indexed: 01/29/2023] Open
Abstract
Renal cell carcinoma (RCC) is associated with a high frequency of metastasis and only few therapies substantially prolong survival. Honokiol, isolated from Magnolia spp. bark, has been shown to exhibit pleiotropic anticancer effects in many cancer types. However, whether honokiol could suppress RCC metastasis has not been fully elucidated. In the present study, we found that honokiol suppressed renal cancer cells' metastasis via dual-blocking epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties. In addition, honokiol inhibited tumor growth in vivo. It was found that honokiol could upregulate miR-141, which targeted ZEB2 and modulated ZEB2 expression. Honokiol reversed EMT and suppressed CSC properties partly through the miR-141/ZEB2 axis. Our study suggested that honokiol may be a suitable therapeutic strategy for RCC treatment.
Collapse
Affiliation(s)
- Weidong Li
- Department of Medical Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Cancer Center of Guangzhou Medical University (CCGMU)
| | - Qian Wang
- The Medical Faculty of Jinan University
| | - Qiaozhen Su
- Department of Neurology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Dandan Ma
- Internal Medicine of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou,
People’s Republic of China
| | - Chang An
- Department of Neurology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Lei Ma
- Department of Medical Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Cancer Center of Guangzhou Medical University (CCGMU)
| | - Hongfeng Liang
- Department of Neurology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine
| |
Collapse
|