1
|
Saini S, Bhupathiraju NDK, Jayawardana SB, Phipps MD, Lewis JS, Francesconi LC, Wijeratne GB, Deri MA, Lapi SE. [ 45Ti]Ti-HOPOs: Potential Complexes for the Development of 45Ti PET Imaging Agents. ACS OMEGA 2025; 10:7306-7316. [PMID: 40028061 PMCID: PMC11866203 DOI: 10.1021/acsomega.4c05544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/08/2025] [Accepted: 01/17/2025] [Indexed: 03/05/2025]
Abstract
Titanium-45 (45Ti) is a radionuclide with desirable physical characteristics for use in positron emission tomography (PET) imaging including a moderate half-life (3.08 h), decay by positron emission (85%), and low mean positron energy of 0.439 MeV. Despite these promising characteristics, the radiochemistry for 45Ti including the development of suitable bifunctional chelators is relatively unexplored compared to that of other radiometals. This work investigated three hydroxypyridinone compounds, viz., 3,2,3-(LI-1,2-HOPO) or C8-HOPO, 3,3,3-(LI-1,2-HOPO) or C9-HOPO, 3,4,3-(LI-1,2-HOPO) or C10-HOPO as potential chelators for 45Ti. Radiolabeling optimization, stability, and biodistribution results demonstrated C9-HOPO to be a promising chelator for 45Ti. In vivo evaluation of the [45Ti]Ti-C9-HOPO complex indicated rapid clearance with no signs of decomplexation.
Collapse
Affiliation(s)
- Shefali Saini
- Department
of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Department
of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - N.V.S. Dinesh K. Bhupathiraju
- Department
of Chemistry, City University of New York
Hunter College, 695 Park
Avenue, New York, New York 10021, United States
| | - Samith B. Jayawardana
- Department
of Chemistry and Biochemistry, University
of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Michael D. Phipps
- Department
of Chemistry, City University of New York
Hunter College, 695 Park
Avenue, New York, New York 10021, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Molecular
Pharmacology Program and the Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Jason S. Lewis
- Molecular
Pharmacology Program and the Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Lynn C. Francesconi
- Department
of Chemistry, City University of New York
Hunter College, 695 Park
Avenue, New York, New York 10021, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
| | - Gayan B. Wijeratne
- Department
of Chemistry and Biochemistry, University
of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Melissa A. Deri
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, Lehman College of the City
University of New York, Bronx, New York 10468, United States
| | - Suzanne E. Lapi
- Department
of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Department
of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
2
|
Sadeghian S, Zare F, Saghaie L, Fassihi A, Zare P, Sabet R. New 3-Hydroxypyridine-4-one Analogues: Their Synthesis, Antimicrobial Evaluation, Molecular Docking, and In Silico ADME Prediction. Med Chem 2024; 20:900-911. [PMID: 38840401 DOI: 10.2174/0115734064307744240523112710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION Drug resistance to existing antimicrobial drugs has become a serious threat to human health, which highlights the need to develop new antimicrobial agents. METHODS In this study, a new set of 3-hydroxypyridine-4-one derivatives (6a-j) was synthesized, and the antimicrobial effects of these derivatives were evaluated against a variety of microorganisms using the microdilution method. The antimicrobial evaluation indicated that compound 6c, with an electron-donating group -OCH3 at the meta position of the phenyl ring, was the most active compound against S. aureus and E. coli species with an MIC value of 32 μg/mL. Compound 6c was more potent than ampicillin as a reference drug. RESULTS The in vitro antifungal results showed that the studied derivatives had moderate effects (MIC = 128-512 μg/mL) against C. albicans and A. niger species. The molecular modeling studies revealed the possible mechanism and suitable interactions of these derivatives with the target protein. CONCLUSION The obtained biological results offer valuable insights into the design of more effective antimicrobial agents.
Collapse
Affiliation(s)
- Sara Sadeghian
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Zare
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pooria Zare
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Razieh Sabet
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Sharma S, Baral M, Kanungo BK. Recent advances in therapeutical applications of the versatile hydroxypyridinone chelators. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-021-01114-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Hydroxypyridinones as a Very Promising Platform for Targeted Diagnostic and Therapeutic Radiopharmaceuticals. Molecules 2021. [DOI: 10.3390/molecules26226997
expr 973886017 + 973118332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Hydroxypyridinones (HOPOs) have been used in the chelation therapy of iron and actinide metals. Their application in metal-based radiopharmaceuticals has also been increasing in recent years. This review article focuses on how multidentate HOPOs can be used in targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals. The general structure of radiometal-based targeted radiopharmaceuticals, a brief description of siderophores, the basic structure and properties of bidentate HOPO, some representative HOPO multidentate chelating agents, radiopharmaceuticals based on HOPO multidentate bifunctional chelators for gallium-68, thorium-227 and zirconium-89, as well as the future prospects of HOPO multidentate bifunctional chelators in other metal-based radiopharmaceuticals are described and discussed in turn. The HOPO metal-based radiopharmaceuticals that have shown good prospects in clinical and preclinical studies are gallium-68, thorium-227 and zirconium-89 radiopharmaceuticals. We expect HOPO multidentate bifunctional chelators to be a very promising platform for building novel targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals.
Collapse
|
5
|
Zhou X, Dong L, Shen L. Hydroxypyridinones as a Very Promising Platform for Targeted Diagnostic and Therapeutic Radiopharmaceuticals. Molecules 2021; 26:6997. [PMID: 34834087 PMCID: PMC8619595 DOI: 10.3390/molecules26226997&set/a 916769719+956065658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Hydroxypyridinones (HOPOs) have been used in the chelation therapy of iron and actinide metals. Their application in metal-based radiopharmaceuticals has also been increasing in recent years. This review article focuses on how multidentate HOPOs can be used in targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals. The general structure of radiometal-based targeted radiopharmaceuticals, a brief description of siderophores, the basic structure and properties of bidentate HOPO, some representative HOPO multidentate chelating agents, radiopharmaceuticals based on HOPO multidentate bifunctional chelators for gallium-68, thorium-227 and zirconium-89, as well as the future prospects of HOPO multidentate bifunctional chelators in other metal-based radiopharmaceuticals are described and discussed in turn. The HOPO metal-based radiopharmaceuticals that have shown good prospects in clinical and preclinical studies are gallium-68, thorium-227 and zirconium-89 radiopharmaceuticals. We expect HOPO multidentate bifunctional chelators to be a very promising platform for building novel targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals.
Collapse
Affiliation(s)
- Xu Zhou
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Linlin Dong
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Langtao Shen
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
- National Isotope Center of Engineering and Technology, China Institute of Atomic Energy, Beijing 102413, China
- Correspondence:
| |
Collapse
|
6
|
Zhou X, Dong L, Shen L. Hydroxypyridinones as a Very Promising Platform for Targeted Diagnostic and Therapeutic Radiopharmaceuticals. Molecules 2021; 26:6997. [PMID: 34834087 PMCID: PMC8619595 DOI: 10.3390/molecules26226997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023] Open
Abstract
Hydroxypyridinones (HOPOs) have been used in the chelation therapy of iron and actinide metals. Their application in metal-based radiopharmaceuticals has also been increasing in recent years. This review article focuses on how multidentate HOPOs can be used in targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals. The general structure of radiometal-based targeted radiopharmaceuticals, a brief description of siderophores, the basic structure and properties of bidentate HOPO, some representative HOPO multidentate chelating agents, radiopharmaceuticals based on HOPO multidentate bifunctional chelators for gallium-68, thorium-227 and zirconium-89, as well as the future prospects of HOPO multidentate bifunctional chelators in other metal-based radiopharmaceuticals are described and discussed in turn. The HOPO metal-based radiopharmaceuticals that have shown good prospects in clinical and preclinical studies are gallium-68, thorium-227 and zirconium-89 radiopharmaceuticals. We expect HOPO multidentate bifunctional chelators to be a very promising platform for building novel targeted radiometal-based diagnostic and therapeutic radiopharmaceuticals.
Collapse
Affiliation(s)
- Xu Zhou
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Linlin Dong
- China Isotope & Radiation Corporation, Beijing 100089, China;
| | - Langtao Shen
- HTA Co., Ltd., Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China;
- National Isotope Center of Engineering and Technology, China Institute of Atomic Energy, Beijing 102413, China
| |
Collapse
|
7
|
Zhang Q, Feng S, Zhao Y, Jin B, Peng R. Design and synthesis of N-hydroxyalkyl substituted deferiprone: a kind of iron chelating agents for Parkinson's disease chelation therapy strategy. J Biol Inorg Chem 2021; 26:467-478. [PMID: 33963933 DOI: 10.1007/s00775-021-01863-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/16/2021] [Indexed: 12/18/2022]
Abstract
The blood-brain barrier (BBB) permeability of molecules needs to meet stringent requirements of Lipinski's rule, which pose a difficulty for the rational design of efficient chelating agents for Parkinson's disease chelation therapy. Therefore, the iron chelators employed N-aliphatic alcohols modification of deferiprone were reasonably designed in this work. The chelators not only meet Lipinski's rule for BBB permeability, but also ensure the iron affinity. The results of solution thermodynamics demonstrated that the pFe3+ value of N-hydroxyalkyl substituted deferiprone is between 19.20 and 19.36, which is comparable to that of clinical deferiprone. The results of 2,2-diphenyl-1-picrylhydrazyl radical scavenging assays indicated that the N-hydroxyalkyl substituted deferiprone also possesses similar radical scavenging ability in comparison to deferiprone. Meanwhile, the Cell Counting Kit-8 assays of neuron-like rat pheochromocytoma cell-line demonstrated that the N-hydroxyalkyl substituted deferiprone exhibits extremely low cytotoxicity and excellent H2O2-induced oxidative stress protection effect. These results indicated that N-hydroxyalkyl substituted deferiprone has potential application prospects as chelating agents for Parkinson's disease chelation therapy strategy.
Collapse
Affiliation(s)
- Qingchun Zhang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Shufan Feng
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yulian Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Bo Jin
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Rufang Peng
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
8
|
Complexation of environmentally and biologically relevant metals with bifunctional 3-hydroxy-4-pyridinones. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Mishra L, Sundararajan M, Bandyopadhyay T. Molecular dynamics simulations of plutonium binding and its decorporation from the binding-cleft of human serum transferrin. J Biol Inorg Chem 2020; 25:213-231. [PMID: 31980924 DOI: 10.1007/s00775-020-01753-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/03/2020] [Indexed: 11/29/2022]
Abstract
The possibility of plutonium (Pu) intake by radiation workers can not be ruled out. Transportation of Pu(IV) to various organs/cells is mainly carried through iron-carrying protein, serum transferrin (sTf), by receptor-mediated endocytosis. Understanding the Pu-sTf interaction is a primary step toward future design of its decorporating agents. We report MD simulations of Pu(IV) binding with sTf and look out for its decorporation at extracellular pH using suitable ligands. MD simulations were carried out in polarizable water environment at different protonation states of the protein. Results unravel the binding motif of Pu(IV): (1) sTf binds the ion in closed conformation at extracellular serum pH with carbonate as synergistic anions, (2) change in protonation state of dilysine (K206 and K296)-trigger and that of the carbonate ion at acidic endosomal pH is found to cause conformational changes of protein, conducive for the heavy ion to be released, although; (3) strong electrostatic interaction between D63 in the binding-cleft and Pu(IV) is found not to ever set free the ion. In an endeavour to decorporate Pu(IV), fragmented molecular form of hydroxypyridinone (HOPO) and catechol (CAM)-based ligands are docked at the binding site (BS) of the protein and metadynamics simulations are conducted. Pu(IV) binding at BS is found to be so strong that it was not detached from BS with the docked HOPO. However, for the identical set of simulation parameters, CAM is found to facilitate dislodging the heavy ion from the protein's binding influence. Differential behaviour of the two chelators is further explored. Fragmented molecular form of hydroxy-pyridinone (HOPO) and catecholamide (CAM) ligands were docked at the binding-site (BS) of human serum transferrin (sTf) to explore their feasibility as plausible Pu(IV) decorporating agents by employing metadynamics method. CAM was found to dislodge Pu from the sTf BS, while HOPO could not.
Collapse
Affiliation(s)
- Lokpati Mishra
- Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Mahesh Sundararajan
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - Tusar Bandyopadhyay
- Homi Bhabha National Institute, Mumbai, 400094, India. .,Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai, 400 085, India.
| |
Collapse
|
10
|
Irto A, Cardiano P, Cataldo S, Chand K, Maria Cigala R, Crea F, De Stefano C, Gattuso G, Muratore N, Pettignano A, Sammartano S, Amélia Santos M. Speciation Studies of Bifunctional 3-Hydroxy-4-Pyridinone Ligands in the Presence of Zn 2+ at Different Ionic Strengths and Temperatures. Molecules 2019; 24:molecules24224084. [PMID: 31726704 PMCID: PMC6891321 DOI: 10.3390/molecules24224084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
The acid–base properties of two bifunctional 3-hydroxy-4-pyridinone ligands and their chelating capacity towards Zn2+, an essential bio-metal cation, were investigated in NaCl aqueous solutions by potentiometric, UV-Vis spectrophotometric, and 1H NMR spectroscopic titrations, carried out at 0.15 ≤ I/mol −1 ≤ 1.00 and 288.15 ≤ T/K ≤ 310.15. A study at I = 0.15 mol L−1 and T = 298.15 K was also performed for other three Zn2+/Lz− systems, with ligands belonging to the same family of compounds. The processing of experimental data allowed the determination of protonation and stability constants, which showed accordance with the data obtained from the different analytical techniques used, and with those reported in the literature for the same class of compounds. ESI-MS spectrometric measurements provided support for the formation of the different Zn2+/ligand species, while computational molecular simulations allowed information to be gained on the metal–ligand coordination. The dependence on ionic strength and the temperature of equilibrium constants were investigated by means of the extended Debye–Hückel model, the classical specific ion interaction theory, and the van’t Hoff equations, respectively.
Collapse
Affiliation(s)
- Anna Irto
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (P.C.); (R.M.C.); (F.C.); (C.D.S.); (G.G.)
| | - Paola Cardiano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (P.C.); (R.M.C.); (F.C.); (C.D.S.); (G.G.)
| | - Salvatore Cataldo
- Dipartimento di Fisica e Chimica Emilio Segrè, ed. 17, Università di Palermo, Viale delle Scienze, I-90128 Palermo, Italy; (S.C.); (N.M.); (A.P.)
| | - Karam Chand
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovísco Pais 1, 1049-001 Lisboa, Portugal;
| | - Rosalia Maria Cigala
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (P.C.); (R.M.C.); (F.C.); (C.D.S.); (G.G.)
| | - Francesco Crea
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (P.C.); (R.M.C.); (F.C.); (C.D.S.); (G.G.)
| | - Concetta De Stefano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (P.C.); (R.M.C.); (F.C.); (C.D.S.); (G.G.)
| | - Giuseppe Gattuso
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (P.C.); (R.M.C.); (F.C.); (C.D.S.); (G.G.)
| | - Nicola Muratore
- Dipartimento di Fisica e Chimica Emilio Segrè, ed. 17, Università di Palermo, Viale delle Scienze, I-90128 Palermo, Italy; (S.C.); (N.M.); (A.P.)
| | - Alberto Pettignano
- Dipartimento di Fisica e Chimica Emilio Segrè, ed. 17, Università di Palermo, Viale delle Scienze, I-90128 Palermo, Italy; (S.C.); (N.M.); (A.P.)
| | - Silvio Sammartano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (P.C.); (R.M.C.); (F.C.); (C.D.S.); (G.G.)
- Correspondence: (S.S.); (M.A.S.); Tel.: +39-0906765749 (S.S.); +351-218419273 (M.A.S.)
| | - M. Amélia Santos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovísco Pais 1, 1049-001 Lisboa, Portugal;
- Correspondence: (S.S.); (M.A.S.); Tel.: +39-0906765749 (S.S.); +351-218419273 (M.A.S.)
| |
Collapse
|
11
|
Nurchi VM, Cappai R, Chand K, Chaves S, Gano L, Crisponi G, Peana M, Zoroddu MA, Santos MA. New strong extrafunctionalizable tris(3,4-HP) and bis(3,4-HP) metal sequestering agents: synthesis, solution and in vivo metal chelation. Dalton Trans 2019; 48:16167-16183. [PMID: 31577287 DOI: 10.1039/c9dt02905b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Finding new multifunctional metal binders to be potentially used in diagnosis or therapy has been a subject of major challenge. Hydroxypyridinones have long been recognized as privileged chelating structures for the design of metal chelating drugs, especially towards hard metal ions, in view of their decorporation in metal overload disorders. Thus, pursuing our strategy of engineering new polydentate 3-hydroxy-4-pyridinones (3,4-HP) with extrafunctionalization capacity for sensing or targeting purposes, we report herein the synthesis and full characterization of a hexadentate (tris-3,4-HP) and a tetradentate (bis-3,4-HP) ligand, possessing three and two 3,4-HP arms N-attached to an aminomethanetrispropionic acid backbone, respectively. Thus, as compared with previously reported analogues, each ligand possesses an extra free amino group ready for further functionalization. Their chelating capacity towards Fe and Al was evaluated in aqueous solution, by potentiometric and spectroscopic techniques, and they proved to be strong sequestering agents for these metal ions without depletion of Zn, an essential biometal. Their excellent in vivo metal-decorporation capacity was also evidenced in mice injected with a radiotracer (67Ga) as an animal model of metal overload pathological situations. These findings provide encouragement for further ongoing extrafunctionalizations in view of several potential biomedical applications.
Collapse
Affiliation(s)
- Valeria M Nurchi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cittadella Universitaria, 09042, Monserrato-Cagliari, Italy.
| | - Rosita Cappai
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cittadella Universitaria, 09042, Monserrato-Cagliari, Italy. and Centro de Quimica Estrutural, Instituto Superior Tecnico, Universidade de Lisboa, Av, Rovisco Pais 1, 1049-001, Lisboa, Portugal.
| | - Karam Chand
- Centro de Quimica Estrutural, Instituto Superior Tecnico, Universidade de Lisboa, Av, Rovisco Pais 1, 1049-001, Lisboa, Portugal.
| | - Sílvia Chaves
- Centro de Quimica Estrutural, Instituto Superior Tecnico, Universidade de Lisboa, Av, Rovisco Pais 1, 1049-001, Lisboa, Portugal.
| | - Lurdes Gano
- Centro de Ciencias e Tecnologias Nucleares(C2TN), Instituto Superior Tecnico, Universidade de Lisboa, Estrada Nacional 10, 2695-006, Lisboa, Portugal
| | - Guido Crisponi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cittadella Universitaria, 09042, Monserrato-Cagliari, Italy.
| | - Massimiliano Peana
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - M Antonietta Zoroddu
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - M Amélia Santos
- Centro de Quimica Estrutural, Instituto Superior Tecnico, Universidade de Lisboa, Av, Rovisco Pais 1, 1049-001, Lisboa, Portugal.
| |
Collapse
|
12
|
Rhodamine probes for Fe3+: theoretical calculation for specific recognition and instant fluorescent bioimaging. Future Med Chem 2019; 11:1859-1869. [DOI: 10.4155/fmc-2019-0077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To overcome the existing difficulty in distinguishing Fe(III) from Fe(II), rhodamine-containing Fe3+ probes, giving off different fluorescence responses to ferric and ferrous ions, were synthesized. Materials & methods: Color change in Fe3+ recognition, accompanying spirolactam opening–closing, could be used for ‘naked-eye’ detection. Theoretical calculations revealed the possible Fe3+-probe combination mechanism. Results: Apart from the probes’ specific response toward Fe3+, the Fe3+-probe demonstrated highly quantitative relationships in fluorescence titration, instant labeling and dynamic tracking of intracellular Fe3+ in bioimaging. Conclusion: Cytotoxity and bioimaging in living L929 suggested the probes’ future applications as real-time detection methods for Fe3+ in clinical diagnosis. Instant and time-lapse imagings, based on fluorescence-time stability of Fe3+-probe, enables the dynamic labeling and tracking of Fe3+ in living systems.
Collapse
|
13
|
A new bis-(3-hydroxy-4-pyridinone)-DTPA-derivative: Synthesis, complexation of di-/tri-valent metal cations and in vivo M3+ sequestering ability. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
New bis-(3-hydroxy-4-pyridinone)-NTA-derivative: Synthesis, binding ability towards Ca2+, Cu2+, Zn2+, Al3+, Fe3+ and biological assays. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Bifunctional 3-hydroxy-4-pyridinones as effective aluminium chelators: synthesis, solution equilibrium studies and in vivo evaluation. J Inorg Biochem 2018; 186:116-129. [DOI: 10.1016/j.jinorgbio.2018.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 11/19/2022]
|
16
|
The possibility of iron chelation therapy in the presence of different HPOs; a molecular approach to the non-covalent interactions and binding energies. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.04.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Cappai R, Chand K, Lachowicz JI, Chaves S, Gano L, Crisponi G, Nurchi VM, Peana M, Zoroddu MA, Santos MA. A new tripodal-3-hydroxy-4-pyridinone for iron and aluminium sequestration: synthesis, complexation and in vivo studies. NEW J CHEM 2018. [DOI: 10.1039/c8nj00116b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new highly efficient tris-hydroxypyridinone chelator for iron and aluminum, with promising capacity as a potential metal decorporation agent.
Collapse
Affiliation(s)
- Rosita Cappai
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Karam Chand
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Joanna I. Lachowicz
- Dipartimento di Scienze Chimiche e Geologiche
- Università di Cagliari
- Cittadella Universitaria
- 09042 Monserrato-Cagliari
- Italy
| | - Sílvia Chaves
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares (C2TN)
- Instituto Superior Técnico
- Universidade de Lisboa
- 2695-066 Bobadela LRS
- Portugal
| | - Guido Crisponi
- Dipartimento di Scienze Chimiche e Geologiche
- Università di Cagliari
- Cittadella Universitaria
- 09042 Monserrato-Cagliari
- Italy
| | - Valeria M. Nurchi
- Dipartimento di Scienze Chimiche e Geologiche
- Università di Cagliari
- Cittadella Universitaria
- 09042 Monserrato-Cagliari
- Italy
| | - Massimiliano Peana
- Dipartimento di Chimica e Farmacia
- Università di Sassari
- 07100 Sassari
- Italy
| | | | - M. Amélia Santos
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| |
Collapse
|
18
|
Zhou D, Tian Y, Ma Y. Preparation of 5-Functionalised Pyridine Derivatives using a Br/Mg Exchange Reaction: Application to the Synthesis of an Iron-Chelator Prodrug. JOURNAL OF CHEMICAL RESEARCH 2017. [DOI: 10.3184/174751917x15094552081134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A novel preparation of 5-functionalised pyridine derivatives is reported from 5-bromo-4-tosyloxypyridines via a Br/Mg exchange procedure with i-PrMgCl·LiCl, followed by addition of an electrophile. The reaction was carried out under mild conditions and gave good to high yields. The resulting 5-functionalised pyridine derivatives enrich the library of pyridinone-type iron-chelator prodrugs.
Collapse
Affiliation(s)
- Dongheng Zhou
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, P.R. China
| | - Yufei Tian
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, P.R. China
| | - Yongmin Ma
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, P.R. China
| |
Collapse
|
19
|
Petrović Peroković V, Car Ž, Opačak-Bernardi T, Martin-Kleiner I, Kralj M, Tomić S. In vitro antiproliferative study of novel adamantyl pyridin-4-ones. Mol Divers 2017; 21:881-891. [PMID: 28695468 DOI: 10.1007/s11030-017-9763-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/30/2017] [Indexed: 12/23/2022]
Abstract
The preparation of several N-aryl-substituted (phenyl, p-methylphenyl, p-methoxyphenyl, p-nitrophenyl, p-aminophenyl, p-hydroxyphenyl) 3-hydroxy-2-methylpyridin-4-ones as well as their adamantyl derivatives is described, and their in vitro antitumor properties were investigated. The compounds were synthesized in good yields using efficient synthetic routes and methods. Prepared derivatives were evaluated in an antiproliferative in vitro study on 4 cancer cell lines, namely HCT 116 (colon carcinoma), H 460 (lung carcinoma), MCF-7 (breast carcinoma) and K562 (chronic myelogenous leukemia). All tested compounds showed antiproliferative activity ranging from moderate to strong on all inspected cell lines with 4 adamantane containing derivatives being active and selective at low micromolar IC[Formula: see text] concentrations on HCT 116, H 460 and MCF-7. LDH cytotoxicity assay revealed that cytotoxic effects occur after 48 h of exposure. It was shown that there was no change in caspase activity in the treated cells, but there were changes in the cell cycle. All treated samples showed reduced number of cells in the S phase with increased G0/G1 (4b, 5a, 5b) and G2/M (4a) phase.
Collapse
Affiliation(s)
- V Petrović Peroković
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia.
| | - Ž Car
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - T Opačak-Bernardi
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10/E, 31000, Osijek, Croatia
| | - I Martin-Kleiner
- Laboratory of Experimental Therapy, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - M Kralj
- Laboratory of Experimental Therapy, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - S Tomić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| |
Collapse
|
20
|
Santos MA, Chand K, Chaves S. Recent progress in multifunctional metal chelators as potential drugs for Alzheimer's disease. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Das J, Choi YJ, Song H, Kim JH. Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos: treatment strategies and anticipated applications of nanoparticles in gene delivery. Hum Reprod Update 2016; 22:588-619. [PMID: 27385359 DOI: 10.1093/humupd/dmw020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 05/16/2016] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Engineered nanoparticles (ENPs) offer technological advantages for a variety of industrial and consumer products as well as show promise for biomedical applications. Recent progress in the field of nanotechnology has led to increased exposure to nanoparticles by humans. To date, little is known about the adverse effects of these ENPs on reproductive health, although interest in nanotechnology area is growing. A few biocompatible ENPs have a high loading capacity for exogenous substances, including drugs, DNA or proteins, and can selectively deliver molecular cargo into cells; however, they represent a potential tool for gene delivery into gametes and embryos. OBJECTIVE AND RATIONALE Understanding the reprotoxicological aspects of these ENPs is of the utmost importance to reliably estimate its potential impact on human health. In addition, a search for protective agents to combat ENP-mediated reproductive toxicity is warranted. Therefore, in this review we summarize the toxic effects of a few ENPs (metal and metal oxides, carbon-based nanoparticles, quantum dots and chitosan) in mammalian germ cells and developing embryos, and propose some treatment strategies that could mitigate nanoparticle-mediated toxicity. In addition, we outline the anticipated applications of ENPs in transgenic animal production in order to generate models for investigations into the mechanisms for human disease. SEARCH METHODS A literature search was performed using the National Center for Biotechnology Information PubMed database up until March 2016 and relevant keywords were used to obtain information regarding mammalian germ cell-specific toxicity and embryotoxicity of ENPs, possible treatment strategies, as well as the anticipated applications of nanoparticles in gene delivery in germ cells and embryos. Only English language publications were included. OUTCOMES Here, we demonstrate the toxicological effects of ENPs in mammalian germ cells and developing embryos by considering both in vitro and in vivo experimental models based on the existing literature. The biodistribution and cellular uptake of ENPs and the observed toxicities are mostly dependent on ENP size and surface-coating agents (surface functional groups/surface charge). ENPs have been shown to induce toxicity via oxidative stress, inflammation and DNA damage in both human and mouse germ cells. Use of antioxidant, anti-inflammatory drugs and selective metal chelators would be beneficial against nanoparticle-induced toxicity. WIDER IMPLICATIONS Our review provides the reproductive scientists a mechanistic insight into the reprotoxicological aspects of ENPs to reliably estimate its potential impact on human health and help to select/design protective agents to combat ENP-mediated toxicity. Furthermore, research regarding the detailed mechanism(s) of ENP toxicity in mammalian germ cells and developing embryos as well as the search for protective agents to combat ENP-mediated reproductive toxicity is warranted. Furthermore, we anticipate that investigations into the possibility of applying nanovectors to gene delivery in germ cells and early embryos will open new horizons in reproductive biology.
Collapse
Affiliation(s)
- Joydeep Das
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Yun-Jung Choi
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| |
Collapse
|
22
|
Quantification of the glycation compound 6-(3-hydroxy-4-oxo-2-methyl-4(1H)-pyridin-1-yl)-l-norleucine (maltosine) in model systems and food samples. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2565-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|