1
|
Mastrolorito F, Gambacorta N, Ciriaco F, Cutropia F, Togo MV, Belgiovine V, Tondo AR, Trisciuzzi D, Monaco A, Bellotti R, Altomare CD, Nicolotti O, Amoroso N. Chemical Space Networks Enhance Toxicity Recognition via Graph Embedding. J Chem Inf Model 2025; 65:1850-1861. [PMID: 39914823 DOI: 10.1021/acs.jcim.4c02140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Chemical space networks (CSNs) are a new effective strategy for detecting latent chemical patterns irrespective of defined coordinate systems based on molecular descriptors and fingerprints. CSNs can be a new powerful option as a new approach method and increase the capacity of assessing potential adverse impacts of chemicals on human health. Here, CSNs are shown to effectively characterize the toxicity of chemicals toward several human health end points, namely chromosomal aberrations, mutagenicity, carcinogenicity, developmental toxicity, skin irritation, estrogenicity, androgenicity, and hepatoxicity. In this work, we report how the content from CSNs structure can be embedded through graph neural networks into a metric space, which, for eight different toxicological human health end points, allows better discrimination of toxic and nontoxic chemicals. In fact, using embeddings returns, on average, an increase in predictive performances. In fact, embedding employment enhances the learning, leading to an increment of the classification performance of +12% in terms of the area under the ROC curve. Moreover, through a dedicated eXplainable Artificial Intelligence framework, a straight interpretation of results is provided through the detection of putative structural alerts related to a given toxicity. Hence, the proposed approach represents a step forward in the area of alternative methods and could lead to breakthrough innovations in the design of safer chemicals and drugs.
Collapse
Affiliation(s)
- F Mastrolorito
- Dipartimento di Farmacia-Scienze del Farmaco, Universit̀a degli studi di Bari Aldo Moro, Bari 70125, Italy
| | - N Gambacorta
- Divisione di Genetica Medica, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo 71013, Italy
| | - F Ciriaco
- Dipartimento di Chimica, Universit̀a degli studi di Bari Aldo Moro, Bari 70121, Italy
| | - F Cutropia
- Dipartimento di Farmacia-Scienze del Farmaco, Universit̀a degli studi di Bari Aldo Moro, Bari 70125, Italy
| | - Maria Vittoria Togo
- Dipartimento di Farmacia-Scienze del Farmaco, Universit̀a degli studi di Bari Aldo Moro, Bari 70125, Italy
| | - V Belgiovine
- Dipartimento di Farmacia-Scienze del Farmaco, Universit̀a degli studi di Bari Aldo Moro, Bari 70125, Italy
| | - A R Tondo
- Dipartimento di Farmacia-Scienze del Farmaco, Universit̀a degli studi di Bari Aldo Moro, Bari 70125, Italy
| | - D Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Universit̀a degli studi di Bari Aldo Moro, Bari 70125, Italy
| | - A Monaco
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, via E. Orabona, 4, 70125 Bari, Italy
- Dipartimento Interateneo di Fisica, Universit̀a degli studi di Bari Aldo Moro, Bari 70121, Italy
| | - R Bellotti
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, via E. Orabona, 4, 70125 Bari, Italy
- Dipartimento Interateneo di Fisica, Universit̀a degli studi di Bari Aldo Moro, Bari 70121, Italy
| | - C D Altomare
- Dipartimento di Farmacia-Scienze del Farmaco, Universit̀a degli studi di Bari Aldo Moro, Bari 70125, Italy
| | - O Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Universit̀a degli studi di Bari Aldo Moro, Bari 70125, Italy
| | - N Amoroso
- Dipartimento di Farmacia-Scienze del Farmaco, Universit̀a degli studi di Bari Aldo Moro, Bari 70125, Italy
| |
Collapse
|
2
|
Vittoria Togo M, Mastrolorito F, Orfino A, Graps EA, Tondo AR, Altomare CD, Ciriaco F, Trisciuzzi D, Nicolotti O, Amoroso N. Where developmental toxicity meets explainable artificial intelligence: state-of-the-art and perspectives. Expert Opin Drug Metab Toxicol 2024; 20:561-577. [PMID: 38141160 DOI: 10.1080/17425255.2023.2298827] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION The application of Artificial Intelligence (AI) to predictive toxicology is rapidly increasing, particularly aiming to develop non-testing methods that effectively address ethical concerns and reduce economic costs. In this context, Developmental Toxicity (Dev Tox) stands as a key human health endpoint, especially significant for safeguarding maternal and child well-being. AREAS COVERED This review outlines the existing methods employed in Dev Tox predictions and underscores the benefits of utilizing New Approach Methodologies (NAMs), specifically focusing on eXplainable Artificial Intelligence (XAI), which proves highly efficient in constructing reliable and transparent models aligned with recommendations from international regulatory bodies. EXPERT OPINION The limited availability of high-quality data and the absence of dependable Dev Tox methodologies render XAI an appealing avenue for systematically developing interpretable and transparent models, which hold immense potential for both scientific evaluations and regulatory decision-making.
Collapse
Affiliation(s)
- Maria Vittoria Togo
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Fabrizio Mastrolorito
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Angelica Orfino
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Elisabetta Anna Graps
- ARESS Puglia - Agenzia Regionale strategica per laSalute ed il Sociale, Presidenza della Regione Puglia", Bari, Italy
| | - Anna Rita Tondo
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Cosimo Damiano Altomare
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Fulvio Ciriaco
- Department of Chemistry, Universitá degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Daniela Trisciuzzi
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Orazio Nicolotti
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Nicola Amoroso
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
3
|
Mastrolorito F, Togo MV, Gambacorta N, Trisciuzzi D, Giannuzzi V, Bonifazi F, Liantonio A, Imbrici P, De Luca A, Altomare CD, Ciriaco F, Amoroso N, Nicolotti O. TISBE: A Public Web Platform for the Consensus-Based Explainable Prediction of Developmental Toxicity. Chem Res Toxicol 2024; 37:323-339. [PMID: 38200616 DOI: 10.1021/acs.chemrestox.3c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Despite being extremely relevant for the protection of prenatal and neonatal health, the developmental toxicity (Dev Tox) is a highly complex endpoint whose molecular rationale is still largely unknown. The lack of availability of high-quality data as well as robust nontesting methods makes its understanding even more difficult. Thus, the application of new explainable alternative methods is of utmost importance, with Dev Tox being one of the most animal-intensive research themes of regulatory toxicology. Descending from TIRESIA (Toxicology Intelligence and Regulatory Evaluations for Scientific and Industry Applications), the present work describes TISBE (TIRESIA Improved on Structure-Based Explainability), a new public web platform implementing four fundamental advancements for in silico analyses: a three times larger dataset, a transparent XAI (explainable artificial intelligence) framework employing a fragment-based fingerprint coding, a novel consensus classifier based on five independent machine learning models, and a new applicability domain (AD) method based on a double top-down approach for better estimating the prediction reliability. The training set (TS) includes as many as 1008 chemicals annotated with experimental toxicity values. Based on a 5-fold cross-validation, a median value of 0.410 for the Matthews correlation coefficient was calculated; TISBE was very effective, with a median value of sensitivity and specificity equal to 0.984 and 0.274, respectively. TISBE was applied on two external pools made of 1484 bioactive compounds and 85 pediatric drugs taken from ChEMBL (Chemical European Molecular Biology Laboratory) and TEDDY (Task-Force in Europe for Drug Development in the Young) repositories, respectively. Notably, TISBE gives users the option to clearly spot the molecular fragments responsible for the toxicity or the safety of a given chemical query and is available for free at https://prometheus.farmacia.uniba.it/tisbe.
Collapse
Affiliation(s)
- Fabrizio Mastrolorito
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Maria Vittoria Togo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Nicola Gambacorta
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Viviana Giannuzzi
- Fondazione per la Ricerca Farmacologica Gianni Benzi Onlus, 70010 Valenzano (BA), Italy
| | - Fedele Bonifazi
- Fondazione per la Ricerca Farmacologica Gianni Benzi Onlus, 70010 Valenzano (BA), Italy
| | - Antonella Liantonio
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Paola Imbrici
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Annamaria De Luca
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Cosimo Damiano Altomare
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Fulvio Ciriaco
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Nicola Amoroso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
4
|
Kumar B, Devi J, Dubey A, Tufail A, Antil N. Biological and computational investigation of transition metal(II) complexes of 2-phenoxyaniline-based ligands. Future Med Chem 2023; 15:1919-1942. [PMID: 37929611 DOI: 10.4155/fmc-2023-0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Aim: In the 21st century, we are witness of continuous onslaughts of various pathogen deformities which are a major cause of morbidity and mortality worldwide. Therefore, to investigate the grave for these deformities, antioxidant, anti-inflammatory and antimicrobial biological activities were carried out against newly synthesized Schiff base ligands and their transition metal complexes, which are based on newly synthesized 2-phenoxyaniline and salicylaldehyde derivatives. Materials & methods: The synthesized compounds were characterized by various physiochemical studies, demonstrating the octahedral stereochemistry of the complexes. Results: The biological assessments revealed that complex 6 (3.01 ± 0.01 μM) was found to be highly active for oxidant ailments whereas complex 14 (7.14 ± 0.05 μM, 0.0041-0.0082 μmol/ml) was observed as highly potent for inflammation and microbial diseases. Conclusion: Overall, the biological and computational studies demonstrate that the nickel(II) complex 14 can act as an excellent candidate for pathogen deformities.
Collapse
Affiliation(s)
- Binesh Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Jai Devi
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Chennai, Tamil Nadu, 600077, India
- Department of Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, 201310, India
| | - Aisha Tufail
- Department of Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, 201310, India
| | - Nidhi Antil
- Department of Chemistry, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
5
|
Ren J, Jin T, Li R, Zhong YY, Xuan YX, Wang YL, Yao W, Yu SL, Yuan JT. Priority list of potential endocrine-disrupting chemicals in food chemical contaminants: a docking study and in vitro/epidemiological evidence integration. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:847-866. [PMID: 37920972 DOI: 10.1080/1062936x.2023.2269855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
Diet is an important exposure route of endocrine-disrupting chemicals (EDCs), but many unfiltered potential EDCs remain in food. The in silico prediction of EDCs is a popular method for preliminary screening. Potential EDCs in food were screened using Endocrine Disruptome, an open-source platform for inverse docking, to predict the binding probabilities of 587 food chemical contaminants with 18 human nuclear hormone receptor (NHR) conformations. In total, 25 contaminants were bound to multiple NHRs such as oestrogen receptor α/β and androgen receptor. These 25 compounds mainly include pesticides and per- and polyfluoroalkyl substances (PFASs). The prediction results were validated with the in vitro data. The structural features and the crucial amino acid residues of the four NHRs were also validated based on previous literature. The findings indicate that the screening has good prediction efficiency. In addition, the epidemic evidence about endocrine interference of PFASs in food on children was further validated through this screening. This study provides preliminary screening results for EDCs in food and a priority list for in vitro and in vivo research.
Collapse
Affiliation(s)
- J Ren
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - T Jin
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - R Li
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - Y Y Zhong
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - Y X Xuan
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - Y L Wang
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - W Yao
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - S L Yu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan, P. R. China
| | - J T Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
6
|
Togo MV, Mastrolorito F, Ciriaco F, Trisciuzzi D, Tondo AR, Gambacorta N, Bellantuono L, Monaco A, Leonetti F, Bellotti R, Altomare CD, Amoroso N, Nicolotti O. TIRESIA: An eXplainable Artificial Intelligence Platform for Predicting Developmental Toxicity. J Chem Inf Model 2023; 63:56-66. [PMID: 36520016 DOI: 10.1021/acs.jcim.2c01126] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein, a robust and reproducible eXplainable Artificial Intelligence (XAI) approach is presented, which allows prediction of developmental toxicity, a challenging human-health endpoint in toxicology. The application of XAI as an alternative method is of the utmost importance with developmental toxicity being one of the most animal-intensive areas of regulatory toxicology. In this work, the established CAESAR (Computer Assisted Evaluation of industrial chemical Substances According to Regulations) training set made of 234 chemicals for model learning is employed. Two test sets, including as a whole 585 chemicals, were instead used for validation and generalization purposes. The proposed framework favorably compares with the state-of-the-art approaches in terms of accuracy, sensitivity, and specificity, thus resulting in a reliable support system for developmental toxicity ensuring informativeness, uncertainty estimation, generalization, and transparency. Based on the eXtreme Gradient Boosting (XGB) algorithm, our predictive model provides easy interpretative keys based on specific molecular descriptors and structural alerts enabling one to distinguish toxic and nontoxic chemicals. Inspired by the Organisation for Economic Co-operation and Development (OECD) principles for the validation of Quantitative Structure-Activity Relationships (QSARs) for regulatory purposes, the results are summarized in a standard report in portable document format, enclosing also details concerned with a density-based model applicability domain and SHAP (SHapley Additive exPlanations) explainability, the latter particularly useful to better understand the effective roles played by molecular features. Notably, our model has been implemented in TIRESIA (Toxicology Intelligence and Regulatory Evaluations for Scientific and Industry Applications), a free of charge web platform available at http://tiresia.uniba.it.
Collapse
Affiliation(s)
- Maria Vittoria Togo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy
| | - Fabrizio Mastrolorito
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy
| | - Fulvio Ciriaco
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy
| | - Anna Rita Tondo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy
| | - Nicola Gambacorta
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy
| | - Loredana Bellantuono
- Dipartimento di Biomedicina Traslazionale e Neuroscienze (DiBraiN), Università degli Studi di Bari Aldo Moro, 70124Bari, Italy.,Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125Bari, Italy
| | - Alfonso Monaco
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125Bari, Italy.,Dipartimento Interateneo di Fisica M. Merlin, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy
| | - Francesco Leonetti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy
| | - Roberto Bellotti
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125Bari, Italy.,Dipartimento Interateneo di Fisica M. Merlin, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy
| | - Cosimo Damiano Altomare
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy
| | - Nicola Amoroso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy.,Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy
| |
Collapse
|
7
|
Zhang C, Wu J, Chen Q, Tan H, Huang F, Guo J, Zhang X, Yu H, Shi W. Allosteric binding on nuclear receptors: Insights on screening of non-competitive endocrine-disrupting chemicals. ENVIRONMENT INTERNATIONAL 2022; 159:107009. [PMID: 34883459 DOI: 10.1016/j.envint.2021.107009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can compete with endogenous hormones and bind to the orthosteric site of nuclear receptors (NRs), affecting normal endocrine system function and causing severe symptoms. Recently, a series of pharmaceuticals and personal care products (PPCPs) have been discovered to bind to the allosteric sites of NRs and induce similar effects. However, it remains unclear how diverse EDCs work in this new way. Therefore, we have systematically summarized the allosteric sites and underlying mechanisms based on existing studies, mainly regarding drugs belonging to the PPCP class. Advanced methods, classified as structural biology, biochemistry and computational simulation, together with their advantages and hurdles for allosteric site recognition and mechanism insight have also been described. Furthermore, we have highlighted two available strategies for virtual screening of numerous EDCs, relying on the structural features of allosteric sites and lead compounds, respectively. We aim to provide reliable theoretical and technical support for a broader view of various allosteric interactions between EDCs and NRs, and to drive high-throughput and accurate screening of potential EDCs with non-competitive effects.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Jinqiu Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Qinchang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Haoyue Tan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Fuyan Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
8
|
Sellami A, Réau M, Montes M, Lagarde N. Review of in silico studies dedicated to the nuclear receptor family: Therapeutic prospects and toxicological concerns. Front Endocrinol (Lausanne) 2022; 13:986016. [PMID: 36176461 PMCID: PMC9513233 DOI: 10.3389/fendo.2022.986016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Being in the center of both therapeutic and toxicological concerns, NRs are widely studied for drug discovery application but also to unravel the potential toxicity of environmental compounds such as pesticides, cosmetics or additives. High throughput screening campaigns (HTS) are largely used to detect compounds able to interact with this protein family for both therapeutic and toxicological purposes. These methods lead to a large amount of data requiring the use of computational approaches for a robust and correct analysis and interpretation. The output data can be used to build predictive models to forecast the behavior of new chemicals based on their in vitro activities. This atrticle is a review of the studies published in the last decade and dedicated to NR ligands in silico prediction for both therapeutic and toxicological purposes. Over 100 articles concerning 14 NR subfamilies were carefully read and analyzed in order to retrieve the most commonly used computational methods to develop predictive models, to retrieve the databases deployed in the model building process and to pinpoint some of the limitations they faced.
Collapse
|
9
|
Creanza TM, Delre P, Ancona N, Lentini G, Saviano M, Mangiatordi GF. Structure-Based Prediction of hERG-Related Cardiotoxicity: A Benchmark Study. J Chem Inf Model 2021; 61:4758-4770. [PMID: 34506150 PMCID: PMC9282647 DOI: 10.1021/acs.jcim.1c00744] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Drug-induced blockade of the human
ether-à-go-go-related
gene (hERG) channel is today considered the main
cause of cardiotoxicity in postmarketing surveillance. Hence, several
ligand-based approaches were developed in the last years and are currently
employed in the early stages of a drug discovery process for in silico cardiac safety assessment of drug candidates.
Herein, we present the first structure-based classifiers able to discern hERG binders from nonbinders. LASSO regularized support
vector machines were applied to integrate docking scores and protein–ligand
interaction fingerprints. A total of 396 models were trained and validated
based on: (i) high-quality experimental bioactivity information returned
by 8337 curated compounds extracted from ChEMBL (version 25) and (ii)
structural predictor data. Molecular docking simulations were performed
using GLIDE and GOLD software programs and four different hERG structural models, namely, the recently published structures
obtained by cryoelectron microscopy (PDB codes: 5VA1 and 7CN1) and
two published homology models selected for comparison. Interestingly,
some classifiers return performances comparable to ligand-based models
in terms of area under the ROC curve (AUCMAX = 0.86 ±
0.01) and negative predictive values (NPVMAX = 0.81 ±
0.01), thus putting forward the herein proposed computational workflow
as a valuable tool for predicting hERG-related cardiotoxicity
without the limitations of ligand-based models, typically affected
by low interpretability and a limited applicability domain. From a
methodological point of view, our study represents the first example
of a successful integration of docking scores and protein–ligand
interaction fingerprints (IFs) through a support vector machine (SVM)
LASSO regularized strategy. Finally, the study highlights the importance
of using hERG structural models accounting for ligand-induced
fit effects and allowed us to select the best-performing protein conformation
(made available in the Supporting Information, SI) to be employed
for a reliable structure-based prediction of hERG-related cardiotoxicity.
Collapse
Affiliation(s)
- Teresa Maria Creanza
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Via Amendola 122/o, 70126 Bari, Italy
| | - Pietro Delre
- Chemistry Department, University of Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy.,CNR-Institute of Crystallography, Via Amendola 122/o, 70126 Bari, Italy
| | - Nicola Ancona
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Via Amendola 122/o, 70126 Bari, Italy
| | - Giovanni Lentini
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy
| | - Michele Saviano
- CNR-Institute of Crystallography, Via Amendola 122/o, 70126 Bari, Italy
| | | |
Collapse
|
10
|
Predicting Potential Endocrine Disrupting Chemicals Binding to Estrogen Receptor α (ERα) Using a Pipeline Combining Structure-Based and Ligand-Based in Silico Methods. Int J Mol Sci 2021; 22:ijms22062846. [PMID: 33799614 PMCID: PMC7999354 DOI: 10.3390/ijms22062846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
The estrogen receptors α (ERα) are transcription factors involved in several physiological processes belonging to the nuclear receptors (NRs) protein family. Besides the endogenous ligands, several other chemicals are able to bind to those receptors. Among them are endocrine disrupting chemicals (EDCs) that can trigger toxicological pathways. Many studies have focused on predicting EDCs based on their ability to bind NRs; mainly, estrogen receptors (ER), thyroid hormones receptors (TR), androgen receptors (AR), glucocorticoid receptors (GR), and peroxisome proliferator-activated receptors gamma (PPARγ). In this work, we suggest a pipeline designed for the prediction of ERα binding activity. The flagged compounds can be further explored using experimental techniques to assess their potential to be EDCs. The pipeline is a combination of structure based (docking and pharmacophore models) and ligand based (pharmacophore models) methods. The models have been constructed using the Environmental Protection Agency (EPA) data encompassing a large number of structurally diverse compounds. A validation step was then achieved using two external databases: the NR-DBIND (Nuclear Receptors DataBase Including Negative Data) and the EADB (Estrogenic Activity DataBase). Different combination protocols were explored. Results showed that the combination of models performed better than each model taken individually. The consensus protocol that reached values of 0.81 and 0.54 for sensitivity and specificity, respectively, was the best suited for our toxicological study. Insights and recommendations were drawn to alleviate the screening quality of other projects focusing on ERα binding predictions.
Collapse
|
11
|
Virtual screening and assessment of anticancer potential of selenium-based compounds against HL-60 and MCF7 cells. Future Med Chem 2020; 12:2191-2207. [PMID: 33243002 DOI: 10.4155/fmc-2020-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Selenium-based compounds have antitumor potential. We used a ligand-based virtual screening analysis to identify selenoglycolicamides with potential antitumor activity. Results & Conclusion: Compounds 3, 6, 7 and 8 were selected for in vitro cytotoxicity tests against various cell lines, according to spectrophotometry results. Compound 3 presented the best cytotoxicity results against a promyelocytic leukemia line (HL-60) and was able to induce cell death at a frequency similar to that observed for doxorubicin. The docking study showed that compound 3 has good interaction energies with the targets caspase-3, 7 and 8, which are components of the apoptotic pathway. These results suggested that selenium has significant pharmacological potential for the selective targeting of tumor cells, inducing molecular and cellular events that culminate in tumor cell death.
Collapse
|
12
|
Carofiglio F, Trisciuzzi D, Gambacorta N, Leonetti F, Stefanachi A, Nicolotti O. Bcr-Abl Allosteric Inhibitors: Where We Are and Where We Are Going to. Molecules 2020; 25:E4210. [PMID: 32937901 PMCID: PMC7570842 DOI: 10.3390/molecules25184210] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
The fusion oncoprotein Bcr-Abl is an aberrant tyrosine kinase responsible for chronic myeloid leukemia and acute lymphoblastic leukemia. The auto-inhibition regulatory module observed in the progenitor kinase c-Abl is lost in the aberrant Bcr-Abl, because of the lack of the N-myristoylated cap able to bind the myristoyl binding pocket also conserved in the Bcr-Abl kinase domain. A way to overcome the occurrence of resistance phenomena frequently observed for Bcr-Abl orthosteric drugs is the rational design of allosteric ligands approaching the so-called myristoyl binding pocket. The discovery of these allosteric inhibitors although very difficult and extremely challenging, represents a valuable option to minimize drug resistance, mostly due to the occurrence of mutations more frequently affecting orthosteric pockets, and to enhance target selectivity with lower off-target effects. In this perspective, we will elucidate at a molecular level the structural bases behind the Bcr-Abl allosteric control and will show how artificial intelligence can be effective to drive the automated de novo design towards off-patent regions of the chemical space.
Collapse
Affiliation(s)
- Francesca Carofiglio
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
- Molecular Horizon srl, Via Montelino 32, 06084 Bettona, Italy
| | - Nicola Gambacorta
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Francesco Leonetti
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Angela Stefanachi
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| | - Orazio Nicolotti
- Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (D.T.); (N.G.); (F.L.)
| |
Collapse
|
13
|
Jaladanki CK, He Y, Zhao LN, Maurer-Stroh S, Loo LH, Song H, Fan H. Virtual screening of potentially endocrine-disrupting chemicals against nuclear receptors and its application to identify PPARγ-bound fatty acids. Arch Toxicol 2020; 95:355-374. [PMID: 32909075 PMCID: PMC7811525 DOI: 10.1007/s00204-020-02897-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Nuclear receptors (NRs) are key regulators of energy homeostasis, body development, and sexual reproduction. Xenobiotics binding to NRs may disrupt natural hormonal systems and induce undesired adverse effects in the body. However, many chemicals of concerns have limited or no experimental data on their potential or lack-of-potential endocrine-disrupting effects. Here, we propose a virtual screening method based on molecular docking for predicting potential endocrine-disrupting chemicals (EDCs) that bind to NRs. For 12 NRs, we systematically analyzed how multiple crystal structures can be used to distinguish actives and inactives found in previous high-throughput experiments. Our method is based on (i) consensus docking scores from multiple structures at a single functional state (agonist-bound or antagonist-bound), (ii) multiple functional states (agonist-bound and antagonist-bound), and (iii) multiple pockets (orthosteric site and alternative sites) of these NRs. We found that the consensus enrichment from multiple structures is better than or comparable to the best enrichment from a single structure. The discriminating power of this consensus strategy was further enhanced by a chemical similarity-weighted scoring scheme, yielding better or comparable enrichment for all studied NRs. Applying this optimized method, we screened 252 fatty acids against peroxisome proliferator-activated receptor gamma (PPARγ) and successfully identified 3 previously unknown fatty acids with Kd = 100-250 μM including two furan fatty acids: furannonanoic acid (FNA) and furanundecanoic acid (FUA), and one cyclopropane fatty acid: phytomonic acid (PTA). These results suggested that the proposed method can be used to rapidly screen and prioritize potential EDCs for further experimental evaluations.
Collapse
Affiliation(s)
- Chaitanya K Jaladanki
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix No. 07-01, Singapore, 138671, Singapore
- Toxicity Mode-of-Action Discovery (ToxMAD) Platform, Innovations in Food and Chemical Safety Programme, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Yang He
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Li Na Zhao
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix No. 07-01, Singapore, 138671, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix No. 07-01, Singapore, 138671, Singapore
- Toxicity Mode-of-Action Discovery (ToxMAD) Platform, Innovations in Food and Chemical Safety Programme, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Lit-Hsin Loo
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix No. 07-01, Singapore, 138671, Singapore
- Toxicity Mode-of-Action Discovery (ToxMAD) Platform, Innovations in Food and Chemical Safety Programme, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Haiwei Song
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore.
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix No. 07-01, Singapore, 138671, Singapore.
| |
Collapse
|
14
|
Cavalluzzi MM, Imbrici P, Gualdani R, Stefanachi A, Mangiatordi GF, Lentini G, Nicolotti O. Human ether-à-go-go-related potassium channel: exploring SAR to improve drug design. Drug Discov Today 2019; 25:344-366. [PMID: 31756511 DOI: 10.1016/j.drudis.2019.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
hERG is best known as a primary anti-target, the inhibition of which is responsible for serious side effects. A renewed interest in hERG as a desired target, especially in oncology, was sparked because of its role in cellular proliferation and apoptosis. In this study, we survey the most recent advances regarding hERG by focusing on SAR in the attempt to elucidate, at a molecular level, off-target and on-target actions of potential hERG binders, which are highly promiscuous and largely varying in structure. Understanding the rationale behind hERG interactions and the molecular determinants of hERG activity is a real challenge and comprehension of this is of the utmost importance to prioritize compounds in early stages of drug discovery and to minimize cardiotoxicity attrition in preclinical and clinical studies.
Collapse
Affiliation(s)
- Maria Maddalena Cavalluzzi
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy
| | - Paola Imbrici
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy
| | - Roberta Gualdani
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Angela Stefanachi
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy
| | | | - Giovanni Lentini
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Via E. Orabona, 4, 70126 Bari, Italy.
| |
Collapse
|
15
|
Gonzalez TL, Rae JM, Colacino JA, Richardson RJ. Homology models of mouse and rat estrogen receptor- α ligand-binding domain created by in silico mutagenesis of a human template: molecular docking with 17ß-estradiol, diethylstilbestrol, and paraben analogs. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 10:1-16. [PMID: 30740556 PMCID: PMC6363358 DOI: 10.1016/j.comtox.2018.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Crystal structures exist for human, but not rodent, estrogen receptor-α ligand-binding domain (ERα-LBD). Consequently, rodent studies involving binding of compounds to ERα-LBD are limited in their molecular-level interpretation and extrapolation to humans. Because the sequences of rodent and human ERα-LBDs are > 95% identical, we expected their 3D structures and ligand binding to be highly similar. To test this hypothesis, we used the human ERα-LBD structure (PDB 3UUD) as a template to produce rat and mouse homology models. Employing the rodent models and human structure, we generated docking poses of 23 Group A ligands (17ß-estradiol, diethylstilbestrol, and 21 paraben analogs) in AutoDock Vina for interspecies comparisons. Ligand RMSDs (Å) (median, 95% CI) were 0.49 (0.21-1.82) (human-mouse) and 1.19 (0.22-1.82) (human-rat), well below the 2.0-2.5 Å range for equivalent docking poses. Numbers of interspecies ligand-receptor residue contacts were highly similar, with Sorensen Sc (%) = 96.8 (90.0-100) (human-mouse) and 97.7 (89.5-100) (human-rat). Likewise, numbers of interspecies ligand-receptor residue contacts were highly correlated: Pearson r = 0.913 (human-mouse) and 0.925 (human-rat). Numbers of interspecies ligand-receptor atom contacts were even more tightly correlated: r = 0.979 (human-mouse) and 0.986 (human-rat). Pyramid plots of numbers of ligand-receptor atom contacts by residue exhibited high interspecies symmetry and had Spearman r s = 0.977 (human-mouse) and 0.966 (human-rat). Group B ligands included 15 ring-substituted parabens recently shown experimentally to exhibit decreased binding to human ERα and to exert increased antimicrobial activity. Ligand efficiencies calculated from docking ligands into human ERα-LBD were well correlated with those derived from published experimental data (Pearson partial r p = 0.894 and 0.918; Groups A and B, respectively). Overall, the results indicate that our constructed rodent ERα-LBDs interact with ligands in like manner to the human receptor, thus providing a high level of confidence in extrapolations of rodent to human ligand-receptor interactions.
Collapse
Affiliation(s)
- Thomas L. Gonzalez
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - James M. Rae
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Justin A. Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109 USA
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109 USA
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Manganelli S, Roncaglioni A, Mansouri K, Judson RS, Benfenati E, Manganaro A, Ruiz P. Development, validation and integration of in silico models to identify androgen active chemicals. CHEMOSPHERE 2019; 220:204-215. [PMID: 30584954 PMCID: PMC6778835 DOI: 10.1016/j.chemosphere.2018.12.131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 05/21/2023]
Abstract
Humans are exposed to large numbers of environmental chemicals, some of which potentially interfere with the endocrine system. The identification of potential endocrine disrupting chemicals (EDCs) has gained increasing priority in the assessment of environmental hazards. The U.S. Environmental Protection Agency (U.S. EPA) has developed the Endocrine Disruptor Screening Program (EDSP) which aims to prioritize and screen potential EDCs. The Toxicity Forecaster (ToxCast) program has generated data using in vitro high-throughput screening (HTS) assays measuring activity of chemicals at multiple points along the androgen receptor (AR) activity pathway. In the present study, using a large and diverse data set of 1667 chemicals provided by the U.S. EPA from the combined ToxCast AR assays in the framework of the Collaborative Modeling Project for Androgen Receptor Activity (CoMPARA). Two models were built using ADMET Predictor™; one is based on Artificial Neural Networks (ANNs) technology and the other uses a Support Vector Machine (SVM) algorithm; one model is a Decision Tree (DT) developed in R; and two models make use of differently combined sets of structural alerts (SAs) automatically extracted by SARpy. We used two strategies to integrate predictions from single models; one is based on a majority vote approach and the other on prediction convergence. These strategies led to enhanced statistical performance in most cases. Moreover, the majority vote approach improved prediction coverage when one or more single models were not able to provide any estimations. This study integrates multiple in silico approaches as a virtual screening tool for use in risk assessment of endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Serena Manganelli
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via G. La Masa 19, 20156, Milan, Italy
| | - Alessandra Roncaglioni
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via G. La Masa 19, 20156, Milan, Italy
| | - Kamel Mansouri
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; Oak Ridge Institute for Science and Education, 1299 Bethel Valley Road, Oak Ridge, TN 37830, USA; Integrated Laboratory Systems, Inc., 601 Keystone Dr, Morrisville, NC 27650, USA
| | - Richard S Judson
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via G. La Masa 19, 20156, Milan, Italy
| | - Alberto Manganaro
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via G. La Masa 19, 20156, Milan, Italy
| | - Patricia Ruiz
- Computational Toxicology and Methods Development Laboratory, Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Atlanta, GA, Georgia.
| |
Collapse
|
17
|
Mangiatordi GF, Trisciuzzi D, Iacobazzi R, Denora N, Pisani L, Catto M, Leonetti F, Alberga D, Nicolotti O. Automated identification of structurally heterogeneous and patentable antiproliferative hits as potential tubulin inhibitors. Chem Biol Drug Des 2018; 92:1161-1170. [PMID: 29633572 DOI: 10.1111/cbdd.13200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/05/2018] [Accepted: 03/03/2018] [Indexed: 12/27/2022]
Abstract
By employing a recently developed hierarchical computational platform, we identified 37 novel and structurally diverse tubulin targeting compounds. In particular, hierarchical molecular filters, based on molecular shape similarity, structure-based pharmacophore, and molecular docking, were applied on a large chemical collection of commercial compounds to identify unexplored and patentable microtubule-destabilizing candidates. The herein proposed 37 novel hits, showing new molecular scaffolds (such as 1,3,3a,4-tetraaza-1,2,3,4,5,6,7,7a-octahydroindene or dihydropyrrolidin-2-one fused to a chromen-4-one), are provided with antiproliferative activity in the μm range toward MCF-7 (human breast cancer lines). Importantly, there is a likely causative relationship between cytotoxicity and the inhibition of tubulin polymerization at the colchicine binding site, assessed through fluorescence polymerization assays.
Collapse
Affiliation(s)
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | | | - Nunzio Denora
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | - Leonardo Pisani
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | - Francesco Leonetti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | - Domenico Alberga
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
18
|
Mansouri K, Grulke CM, Judson RS, Williams AJ. OPERA models for predicting physicochemical properties and environmental fate endpoints. J Cheminform 2018. [PMID: 29520515 PMCID: PMC5843579 DOI: 10.1186/s13321-018-0263-1] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The collection of chemical structure information and associated experimental data for quantitative structure–activity/property relationship (QSAR/QSPR) modeling is facilitated by an increasing number of public databases containing large amounts of useful data. However, the performance of QSAR models highly depends on the quality of the data and modeling methodology used. This study aims to develop robust QSAR/QSPR models for chemical properties of environmental interest that can be used for regulatory purposes. This study primarily uses data from the publicly available PHYSPROP database consisting of a set of 13 common physicochemical and environmental fate properties. These datasets have undergone extensive curation using an automated workflow to select only high-quality data, and the chemical structures were standardized prior to calculation of the molecular descriptors. The modeling procedure was developed based on the five Organization for Economic Cooperation and Development (OECD) principles for QSAR models. A weighted k-nearest neighbor approach was adopted using a minimum number of required descriptors calculated using PaDEL, an open-source software. The genetic algorithms selected only the most pertinent and mechanistically interpretable descriptors (2–15, with an average of 11 descriptors). The sizes of the modeled datasets varied from 150 chemicals for biodegradability half-life to 14,050 chemicals for logP, with an average of 3222 chemicals across all endpoints. The optimal models were built on randomly selected training sets (75%) and validated using fivefold cross-validation (CV) and test sets (25%). The CV Q2 of the models varied from 0.72 to 0.95, with an average of 0.86 and an R2 test value from 0.71 to 0.96, with an average of 0.82. Modeling and performance details are described in QSAR model reporting format and were validated by the European Commission’s Joint Research Center to be OECD compliant. All models are freely available as an open-source, command-line application called OPEn structure–activity/property Relationship App (OPERA). OPERA models were applied to more than 750,000 chemicals to produce freely available predicted data on the U.S. Environmental Protection Agency’s CompTox Chemistry Dashboard.![]()
Collapse
Affiliation(s)
- Kamel Mansouri
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA. .,Oak Ridge Institute for Science and Education, 1299 Bethel Valley Road, Oak Ridge, TN, 37830, USA. .,ScitoVation LLC, 6 Davis Drive, Research Triangle Park, NC, 27709, USA.
| | - Chris M Grulke
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Richard S Judson
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Antony J Williams
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
19
|
Passeri GI, Trisciuzzi D, Alberga D, Siragusa L, Leonetti F, Mangiatordi GF, Nicolotti O. Strategies of Virtual Screening in Medicinal Chemistry. ACTA ACUST UNITED AC 2018. [DOI: 10.4018/ijqspr.2018010108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Virtual screening represents an effective computational strategy to rise-up the chances of finding new bioactive compounds by accelerating the time needed to move from an initial intuition to market. Classically, the most pursued approaches rely on ligand- and structure-based studies, the former employed when structural data information about the target is missing while the latter employed when X-ray/NMR solved or homology models are instead available for the target. The authors will focus on the most advanced techniques applied in this area. In particular, they will survey the key concepts of virtual screening by discussing how to properly select chemical libraries, how to make database curation, how to applying and- and structure-based techniques, how to wisely use post-processing methods. Emphasis will be also given to the most meaningful databases used in VS protocols. For the ease of discussion several examples will be presented.
Collapse
Affiliation(s)
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Domenico Alberga
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Lydia Siragusa
- Molecular Discovery Ltd., Pinner, Middlesex, London, United Kingdom
| | - Francesco Leonetti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Giuseppe F. Mangiatordi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | | |
Collapse
|
20
|
Abstract
Molecular docking is an in silico method widely applied in drug discovery programs to predict the binding mode of a given molecule interacting with a specific biological target. This computational technique is today emerging also in the field of predictive toxicology for regulatory purposes, being for instance successfully applied to develop classification models for the prediction of the endocrine disruptor potential of chemicals. Herein, we describe the protocol for adapting molecular docking to the purposes of predictive toxicology.
Collapse
|
21
|
Trisciuzzi D, Alberga D, Mansouri K, Judson R, Novellino E, Mangiatordi GF, Nicolotti O. Predictive Structure-Based Toxicology Approaches To Assess the Androgenic Potential of Chemicals. J Chem Inf Model 2017; 57:2874-2884. [PMID: 29022712 DOI: 10.1021/acs.jcim.7b00420] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We present a practical and easy-to-run in silico workflow exploiting a structure-based strategy making use of docking simulations to derive highly predictive classification models of the androgenic potential of chemicals. Models were trained on a high-quality chemical collection comprising 1689 curated compounds made available within the CoMPARA consortium from the US Environmental Protection Agency and were integrated with a two-step applicability domain whose implementation had the effect of improving both the confidence in prediction and statistics by reducing the number of false negatives. Among the nine androgen receptor X-ray solved structures, the crystal 2PNU (entry code from the Protein Data Bank) was associated with the best performing structure-based classification model. Three validation sets comprising each 2590 compounds extracted by the DUD-E collection were used to challenge model performance and the effectiveness of Applicability Domain implementation. Next, the 2PNU model was applied to screen and prioritize two collections of chemicals. The first is a small pool of 12 representative androgenic compounds that were accurately classified based on outstanding rationale at the molecular level. The second is a large external blind set of 55450 chemicals with potential for human exposure. We show how the use of molecular docking provides highly interpretable models and can represent a real-life option as an alternative nontesting method for predictive toxicology.
Collapse
Affiliation(s)
- Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro" , Via E. Orabona 4, I-70126 Bari, Italy
| | - Domenico Alberga
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro" , Via E. Orabona 4, I-70126 Bari, Italy.,Centro Ricerche TIRES, Università degli Studi di Bari "Aldo Moro" , Via Amendola 173, I-70126 Bari, Italy
| | - Kamel Mansouri
- Oak Ridge Institute for Science and Education , Oak Ridge, Tennessee 37830, United States.,National Center for Computational Toxicology, U.S. Environmental Protection Agency , 109 T.W. Alexander Drive, Research Triangle Park, North Carolina 27711, United States.,ScitoVation LLC , 6 Davis Drive, Research Triangle Park, North Carolina 27709, United States
| | - Richard Judson
- National Center for Computational Toxicology, U.S. Environmental Protection Agency , 109 T.W. Alexander Drive, Research Triangle Park, North Carolina 27711, United States
| | - Ettore Novellino
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , Via D. Montesano 49, 80131 Napoli, Italy
| | - Giuseppe Felice Mangiatordi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro" , Via E. Orabona 4, I-70126 Bari, Italy.,Centro Ricerche TIRES, Università degli Studi di Bari "Aldo Moro" , Via Amendola 173, I-70126 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro" , Via E. Orabona 4, I-70126 Bari, Italy.,Centro Ricerche TIRES, Università degli Studi di Bari "Aldo Moro" , Via Amendola 173, I-70126 Bari, Italy
| |
Collapse
|
22
|
Cavalluzzi MM, Mangiatordi GF, Nicolotti O, Lentini G. Ligand efficiency metrics in drug discovery: the pros and cons from a practical perspective. Expert Opin Drug Discov 2017; 12:1087-1104. [PMID: 28814111 DOI: 10.1080/17460441.2017.1365056] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Ligand efficiency metrics are almost universally accepted as a valuable indicator of compound quality and an aid to reduce attrition. Areas covered: In this review, the authors describe ligand efficiency metrics giving a balanced overview on their merits and points of weakness in order to enable the readers to gain an informed opinion. Relevant theoretical breakthroughs and drug-like properties are also illustrated. Several recent exemplary case studies are discussed in order to illustrate the main fields of application of ligand efficiency metrics. Expert opinion: As a medicinal chemist guide, ligand efficiency metrics perform in a context- and chemotype-dependent manner; thus, they should not be used as a magic box. Since the 'big bang' of efficiency metrics occurred more or less ten years ago and the average time to develop a new drug is over the same period, the next few years will give a clearer outlook on the increased rate of success, if any, gained by means of these new intriguing tools.
Collapse
Affiliation(s)
| | | | - Orazio Nicolotti
- a Department of Pharmacy - Drug Sciences , University of Bari Aldo Moro , Bari , Italy
| | - Giovanni Lentini
- a Department of Pharmacy - Drug Sciences , University of Bari Aldo Moro , Bari , Italy
| |
Collapse
|
23
|
Mangiatordi GF, Trisciuzzi D, Alberga D, Denora N, Iacobazzi RM, Gadaleta D, Catto M, Nicolotti O. Novel chemotypes targeting tubulin at the colchicine binding site and unbiasing P-glycoprotein. Eur J Med Chem 2017; 139:792-803. [PMID: 28863359 DOI: 10.1016/j.ejmech.2017.07.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022]
Abstract
Retrospective validation studies carried out on three benchmark databases containing a small fraction (that is 2.80%) of known tubulin binders permitted us to develop a computational platform very effective in selecting easier manageable subsets showing by far higher percentages of actives (about 25%). These studies relied on the hierarchical application of multilayer in silico screenings employing filters implying molecular shape similarity; a structure-based pharmacophore model and molecular docking campaigns. Building on this validated approach, we performed intensive prospective studies to screen a large chemical collection, including up to 3.7 millions of commercial compounds, to across an unexplored and patent space in the search of novel colchicine binding site inhibitors. Our investigation was successful in identifying a pool of 31 initial hits showing new molecular scaffolds (such as 4,5-dihydro-1H-pyrrolo[3,4-c]pyrazol-6-one and pyrazolo[1,5-a]pyrimidine). This panel of new hits resulted antiproliferative activity in the low μM range towards MCF-7 human breast cancer, HepG2 human liver cancer, HeLa human ovarian cancer and SHSY5Y human glioblastoma cell lines as well as interesting concentration-dependent inhibition of tubulin polymerization assessed through fluorescence polymerization assays. Unlike typical tubulin inhibitors, a satisfactorily low sensitivity towards P-gp was also measured in bi-directional transport studies across MDCKII-MDR1 cells for a selected subset of seven compounds.
Collapse
Affiliation(s)
- Giuseppe Felice Mangiatordi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Domenico Alberga
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Nunzio Denora
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | | | - Domenico Gadaleta
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy.
| |
Collapse
|
24
|
Porta N, ra Roncaglioni A, Marzo M, Benfenati E. QSAR Methods to Screen Endocrine Disruptors. NUCLEAR RECEPTOR RESEARCH 2016. [DOI: 10.11131/2016/101203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Nicola Porta
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, Via La Masa 19, 20159 Milan, Italy
| | - Aless ra Roncaglioni
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, Via La Masa 19, 20159 Milan, Italy
| | - Marco Marzo
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, Via La Masa 19, 20159 Milan, Italy
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”, Via La Masa 19, 20159 Milan, Italy
| |
Collapse
|
25
|
Mansouri K, Abdelaziz A, Rybacka A, Roncaglioni A, Tropsha A, Varnek A, Zakharov A, Worth A, Richard AM, Grulke CM, Trisciuzzi D, Fourches D, Horvath D, Benfenati E, Muratov E, Wedebye EB, Grisoni F, Mangiatordi GF, Incisivo GM, Hong H, Ng HW, Tetko IV, Balabin I, Kancherla J, Shen J, Burton J, Nicklaus M, Cassotti M, Nikolov NG, Nicolotti O, Andersson PL, Zang Q, Politi R, Beger RD, Todeschini R, Huang R, Farag S, Rosenberg SA, Slavov S, Hu X, Judson RS. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1023-33. [PMID: 26908244 PMCID: PMC4937869 DOI: 10.1289/ehp.1510267] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/05/2015] [Accepted: 02/08/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. OBJECTIVES We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) and demonstrate the efficacy of using predictive computational models trained on high-throughput screening data to evaluate thousands of chemicals for ER-related activity and prioritize them for further testing. METHODS CERAPP combined multiple models developed in collaboration with 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure-activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were evaluated on a set of 7,522 chemicals curated from the literature. To overcome the limitations of single models, a consensus was built by weighting models on scores based on their evaluated accuracies. RESULTS Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing. CONCLUSION This project demonstrated the possibility to screen large libraries of chemicals using a consensus of different in silico approaches. This concept will be applied in future projects related to other end points. CITATION Mansouri K, Abdelaziz A, Rybacka A, Roncaglioni A, Tropsha A, Varnek A, Zakharov A, Worth A, Richard AM, Grulke CM, Trisciuzzi D, Fourches D, Horvath D, Benfenati E, Muratov E, Wedebye EB, Grisoni F, Mangiatordi GF, Incisivo GM, Hong H, Ng HW, Tetko IV, Balabin I, Kancherla J, Shen J, Burton J, Nicklaus M, Cassotti M, Nikolov NG, Nicolotti O, Andersson PL, Zang Q, Politi R, Beger RD, Todeschini R, Huang R, Farag S, Rosenberg SA, Slavov S, Hu X, Judson RS. 2016. CERAPP Collaborative Estrogen Receptor Activity Prediction Project. Environ Health Perspect 124:1023-1033; http://dx.doi.org/10.1289/ehp.1510267.
Collapse
Affiliation(s)
- Kamel Mansouri
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Ahmed Abdelaziz
- Institute of Structural Biology, Helmholtz Zentrum Muenchen-German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | | | - Alessandra Roncaglioni
- Environmental Chemistry and Toxicology Laboratory, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico)-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alexandre Varnek
- Laboratoire de Chemoinformatique, University of Strasbourg, Strasbourg, France
| | - Alexey Zakharov
- National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Andrew Worth
- Institute for Health and Consumer Protection (IHCP), Joint Research Centre of the European Commission in Ispra, Ispra, Italy
| | - Ann M. Richard
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Christopher M. Grulke
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | | - Denis Fourches
- Laboratory for Molecular Modeling, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dragos Horvath
- Laboratoire de Chemoinformatique, University of Strasbourg, Strasbourg, France
| | - Emilio Benfenati
- Environmental Chemistry and Toxicology Laboratory, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico)-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Eugene Muratov
- Laboratory for Molecular Modeling, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eva Bay Wedebye
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Francesca Grisoni
- Milano Chemometrics and QSAR Research Group, University of Milano-Bicocca, Milan, Italy
| | | | - Giuseppina M. Incisivo
- Environmental Chemistry and Toxicology Laboratory, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico)-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Huixiao Hong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration (USDA), Jefferson, Arizona, USA
| | - Hui W. Ng
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration (USDA), Jefferson, Arizona, USA
| | - Igor V. Tetko
- Institute of Structural Biology, Helmholtz Zentrum Muenchen-German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- BigChem GmbH, Neuherberg, Germany
| | - Ilya Balabin
- High Performance Computing, Lockheed Martin, Research Triangle Park, North Carolina, USA
| | - Jayaram Kancherla
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Jie Shen
- Research Institute for Fragrance Materials, Inc., Woodcliff Lake, New Jersey, USA
| | - Julien Burton
- Institute for Health and Consumer Protection (IHCP), Joint Research Centre of the European Commission in Ispra, Ispra, Italy
| | - Marc Nicklaus
- National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Matteo Cassotti
- Milano Chemometrics and QSAR Research Group, University of Milano-Bicocca, Milan, Italy
| | - Nikolai G. Nikolov
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Orazio Nicolotti
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | | | - Qingda Zang
- Integrated Laboratory Systems, Inc., Research Triangle Park, North Carolina, USA
| | - Regina Politi
- Laboratory for Molecular Modeling, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Richard D. Beger
- Division of Systems Biology, National Center for Toxicological Research, USDA, Jefferson, Arizona, USA
| | - Roberto Todeschini
- Milano Chemometrics and QSAR Research Group, University of Milano-Bicocca, Milan, Italy
| | - Ruili Huang
- National Center for Advancing Translational Sciences, NIH, DHHS, Bethesda, Maryland, USA
| | - Sherif Farag
- Laboratory for Molecular Modeling, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sine A. Rosenberg
- Division of Toxicology and Risk Assessment, National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Svetoslav Slavov
- Integrated Laboratory Systems, Inc., Research Triangle Park, North Carolina, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, NIH, DHHS, Bethesda, Maryland, USA
| | - Richard S. Judson
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
- Address correspondence to R.S. Judson, U.S. EPA, National Center for Computational Toxicology, 109 T.W. Alexander Dr., Research Triangle Park, NC 27711 USA. Telephone: (919) 541-3085. E-mail:
| |
Collapse
|
26
|
Mangiatordi GF, Alberga D, Altomare CD, Carotti A, Catto M, Cellamare S, Gadaleta D, Lattanzi G, Leonetti F, Pisani L, Stefanachi A, Trisciuzzi D, Nicolotti O. Mind the Gap! A Journey towards Computational Toxicology. Mol Inform 2016; 35:294-308. [PMID: 27546034 DOI: 10.1002/minf.201501017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/23/2016] [Indexed: 11/11/2022]
Abstract
Computational methods have advanced toxicology towards the development of target-specific models based on a clear cause-effect rationale. However, the predictive potential of these models presents strengths and weaknesses. On the good side, in silico models are valuable cheap alternatives to in vitro and in vivo experiments. On the other, the unconscious use of in silico methods can mislead end-users with elusive results. The focus of this review is on the basic scientific and regulatory recommendations in the derivation and application of computational models. Attention is paid to examine the interplay between computational toxicology and drug discovery and development. Avoiding the easy temptation of an overoptimistic future, we report our view on what can, or cannot, realistically be done. Indeed, studies of safety/toxicity represent a key element of chemical prioritization programs carried out by chemical industries, and primarily by pharmaceutical companies.
Collapse
Affiliation(s)
- Giuseppe Felice Mangiatordi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Domenico Alberga
- Dipartimento Interateneo di Fisica 'M.Merlin', Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Cosimo Damiano Altomare
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Angelo Carotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Saverio Cellamare
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Domenico Gadaleta
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Gianluca Lattanzi
- Dipartimento Interateneo di Fisica 'M.Merlin', Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Francesco Leonetti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Leonardo Pisani
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Angela Stefanachi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'AldoMoro', Via Orabona, 4, 70126, Bari, Italy.
| |
Collapse
|