1
|
Liao W, Shi Y, Li Z, Yin X. Advances in 3D printing combined with tissue engineering for nerve regeneration and repair. J Nanobiotechnology 2025; 23:5. [PMID: 39754257 PMCID: PMC11697815 DOI: 10.1186/s12951-024-03052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/29/2024] [Indexed: 01/06/2025] Open
Abstract
The repair of nerve damage has long posed a challenge owing to limited self-repair capacity and the highly differentiated nature of nerves. While new therapeutic and pharmacologic interventions have emerged in neurology, their regenerative efficacy remains limited. Tissue engineering offers a promising avenue for overcoming the limitations of conventional treatments and increasing the outcomes of regenerative repair. By implanting scaffolds into damaged nerve tissue sites, the repair and functional reconstruction of nerve injuries can be significantly facilitated. The integration of three-dimensional (3D) printing technology introduces a novel approach for accurate simulation and scalably fabricating neural tissue structures. Tissue-engineered scaffolds developed through 3D printing technology are expected to be a viable therapeutic option for nerve injuries, with broad applicability and continued development. This review systematically examines recent advances in 3D printing and tissue engineering for nerve regeneration and repair. It details the basic principles and construction strategies of neural tissue engineering and explores the crucial role of 3D printing technology. Additionally, it elucidates specific applications and technical challenges associated with this integrated approach, thereby providing valuable insights into innovative strategies and pragmatic implementation within this field.
Collapse
Affiliation(s)
- Weifang Liao
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Yuying Shi
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Zuguang Li
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, No. 57 East Xunyang Road, Jiujiang, Jiangxi, 332005, China.
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China.
| |
Collapse
|
2
|
Shen T, Zhang W, Wang X, Ren X. Application of"Spinal cord fusion" in spinal cord injury repair and its neurological mechanism. Heliyon 2024; 10:e29422. [PMID: 38638967 PMCID: PMC11024622 DOI: 10.1016/j.heliyon.2024.e29422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Spinal cord injury (SCI) is a severely disabling and catastrophic condition that poses significant global clinical challenges. The difficulty of SCI repair results from the distinctive pathophysiological mechanisms, which are characterised by limited regenerative capacity and inadequate neuroplasticity of the spinal cord. Additionally, the formation of cystic cavities and astrocytic scars after SCI further obstructs both the ascending and descending neural conduction pathways. Consequently, the urgent challenge in post-SCI recovery lies in repairing the damaged spinal cord to reconstruct a functional and intact neural conduction circuit. In recent years, significant advancements in biological tissue engineering technology and novel therapies have resulted in a transformative shift in the field of SCI repair. Currently, SCI treatment primarily involves drug therapy, stem cell therapy, the use of biological materials, growth factors, and other approaches. This paper comprehensively reviews the progress in SCI research over the years, with a particular focus on the concept of "Spinal Cord Fusion" as a promising technique for SCI reconstruction. By discussing this important research progress and the neurological mechanisms involved, our aim is to help solve the problem of SCI repair as soon as possible and to bring new breakthroughs in the treatment of paraplegia after SCI.
Collapse
Affiliation(s)
- Tingting Shen
- Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH, 43221, United States
| | - Weihua Zhang
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH, 43221, United States
| | - Xiaogang Wang
- Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH, 43221, United States
| | - Xiaoping Ren
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
- Global Initiative to Cure Paralysis (GICUP Alliance), Columbus, OH, 43221, United States
| |
Collapse
|
3
|
Jiang MC, Birch DV, Heckman CJ, Tysseling VM. The Involvement of Ca V1.3 Channels in Prolonged Root Reflexes and Its Potential as a Therapeutic Target in Spinal Cord Injury. Front Neural Circuits 2021; 15:642111. [PMID: 33867945 PMCID: PMC8044857 DOI: 10.3389/fncir.2021.642111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) results in not only the loss of voluntary muscle control, but also in the presence of involuntary movement or spasms. These spasms post-SCI involve hyperexcitability in the spinal motor system. Hyperactive motor commands post SCI result from enhanced excitatory postsynaptic potentials (EPSPs) and persistent inward currents in voltage-gated L-type calcium channels (LTCCs), which are reflected in evoked root reflexes with different timings. To further understand the contributions of these cellular mechanisms and to explore the involvement of LTCC subtypes in SCI-induced hyperexcitability, we measured root reflexes with ventral root recordings and motoneuron activities with intracellular recordings in an in vitro preparation using a mouse model of chronic SCI (cSCI). Specifically, we explored the effects of 1-(3-chlorophenethyl)-3-cyclopentylpyrimidine-2,4,6-(1H,3H,5H)-trione (CPT), a selective negative allosteric modulator of CaV1.3 LTCCs. Our results suggest a hyperexcitability in the spinal motor system in these SCI mice. Bath application of CPT displayed slow onset but dose-dependent inhibition of the root reflexes with the strongest effect on LLRs. However, the inhibitory effect of CPT is less potent in cSCI mice than in acute SCI (aSCI) mice, suggesting changes either in composition of CaV1.3 or other cellular mechanisms in cSCI mice. For intracellular recordings, the intrinsic plateau potentials, was observed in more motoneurons in cSCI mice than in aSCI mice. CPT inhibited the plateau potentials and reduced motoneuron firings evoked by intracellular current injection. These results suggest that the LLR is an important target and that CPT has potential in the therapy of SCI-induced muscle spasms.
Collapse
Affiliation(s)
- Mingchen C Jiang
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Derin V Birch
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Charles J Heckman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Vicki M Tysseling
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
4
|
Wiseman TM, Baron-Heeris D, Houwers IGJ, Keenan R, Williams RJ, Nisbet DR, Harvey AR, Hodgetts SI. Peptide Hydrogel Scaffold for Mesenchymal Precursor Cells Implanted to Injured Adult Rat Spinal Cord. Tissue Eng Part A 2020; 27:993-1007. [PMID: 33040713 DOI: 10.1089/ten.tea.2020.0115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A unique, biomimetic self-assembling peptide (SAP) hydrogel, Fmoc-DIKVAV, has been shown to be a suitable cell and drug delivery system in the injured brain. In this study, we assessed its utility in adult Fischer 344 (F344) rats as a stabilizing scaffold and vehicle for grafted cells after mild thoracic (thoracic level 10 [T10]) contusion spinal cord injury (SCI). Treatments were as follows: Fmoc-DIKVAV alone, Fmoc-DIKVAV containing viable or nonviable rat mesenchymal precursor cells (rMPCs), and rMPCs alone. The majority of post-SCI treatments were administered at 11-15 days (mean 13.5 days) and the results then compared to SCI-only control (no treatment) rats. Postinjury behavior was quantified using open field locomotion (BBB) and LadderWalk analysis. After perfusion at 8 weeks, longitudinal spinal cord sections were immunostained with a panel of antibodies. Qualitatively, in the SAP-only treatment group, implanted gels contained regenerate axons as well as astrocytic, immune cell, and extracellular matrix (ECM) component profiles. Grafts of Fmoc-DIKVAV plus viable or nonviable rMPCs also contained numerous macrophages/microglia and ECM components, but astrocytes were generally confined to implant margins, and axons were rare. Quantitative analysis showed that, while average cyst size was reduced in all experimental groups, the decrease compared to SCI-only controls was only significant in the SAP and rMPC treatment groups. There was gradual improvement in functionality after SCI, but a consistent trend was only seen between the rMPC treatment group and SCI-only controls. In summary, after contusion SCI, implantation of Fmoc-DIKVAV hydrogel provided a favorable microenvironment for cellular infiltration and axonal regrowth, a supportive role that unexpectedly appeared to be compromised by prior inclusion of rMPCs into the gel matrix. Impact statement The self-assembling peptide hydrogel, Fmoc-DIKVAV, is a biomimetic scaffold that is an effective cell and drug delivery system in the injured brain. We examined whether this hydrogel, alone or combined with mesenchymal precursor cells, was also able to stabilise spinal cord tissue after thoracic contusion injury and improve morphological and behavioral outcomes. While improved functionality was not consistently seen, there was reduced cyst size and increased tissue sparing in some groups. There was regenerative axonal growth into hydrogels, but only in initially cell-free implants. This type of polymer is a suitable candidate for further testing in spinal cord injury models.
Collapse
Affiliation(s)
- Tylie M Wiseman
- School of Human Sciences, The University of Western Australia (UWA), Perth, Australia
| | - Danii Baron-Heeris
- School of Human Sciences, The University of Western Australia (UWA), Perth, Australia
| | - Imke G J Houwers
- School of Human Sciences, The University of Western Australia (UWA), Perth, Australia
| | - Rory Keenan
- School of Human Sciences, The University of Western Australia (UWA), Perth, Australia
| | - Richard J Williams
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Burwood, Australia.,Biofab3D, St. Vincent's Hospital, Melbourne, Australia
| | - David R Nisbet
- Biofab3D, St. Vincent's Hospital, Melbourne, Australia.,Laboratory of Advanced Biomaterials, College of Engineering and Computer Science, The Australian National University, Canberra, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia (UWA), Perth, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Australia
| | - Stuart I Hodgetts
- School of Human Sciences, The University of Western Australia (UWA), Perth, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Australia
| |
Collapse
|
5
|
Hosseinzadeh S, Lindsay SL, Gallagher AG, Wellings DA, Riehle MO, Riddell JS, Barnett SC. A novel poly-ε-lysine based implant, Proliferate®, for promotion of CNS repair following spinal cord injury. Biomater Sci 2020; 8:3611-3627. [PMID: 32515439 DOI: 10.1039/d0bm00097c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The limited regenerative capacity of the CNS poses formidable challenges to the repair of spinal cord injury (SCI). Two key barriers to repair are (i) the physical gap left by the injury, and (ii) the inhibitory milieu surrounding the injury, the glial scar. Biomaterial implantation into the injury site can fill the cavity, provide a substrate for cell migration, and potentially attenuate the glial scar. We investigated the biological viability of a biocompatible and biodegradable poly-ε-lysine based biomaterial, Proliferate®, in low and high cross-linked forms and when coated with IKVAV peptide, for SCI implantation. We demonstrate altered astrocyte morphology and nestin expression on Proliferate® compared to conventional glass cell coverslips suggesting a less reactive phenotype. Moreover Proliferate® supported myelination in vitro, with myelination observed sooner on IKVAV-coated constructs compared with uncoated Proliferate®, and delayed overall compared with maintenance on glass coverslips. For in vivo implantation, parallel-aligned channels were fabricated into Proliferate® to provide cell guidance cues. Extensive vascularisation and cellular infiltration were observed in constructs implanted in vivo, along with an astrocyte border and microglial response. Axonal ingrowth was observed at the construct border and inside implants in intact channels. We conclude that Proliferate® is a promising biomaterial for implantation following SCI.
Collapse
Affiliation(s)
- Sara Hosseinzadeh
- Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, University of Glasgow, Glasgow G12 8TA, UK.
| | | | | | | | | | | | | |
Collapse
|
6
|
Ausman JI. Is it time to perform the first human head transplant? Comment on the CSA (CephaloSomatic Ansatomisis) paper by Ren, Canavero, and colleagues. Surg Neurol Int 2018; 9:28. [PMID: 29492328 PMCID: PMC5820846 DOI: 10.4103/sni.sni_472_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 01/13/2023] Open
Affiliation(s)
- James I Ausman
- Emeritus Editor-in-Chief and Publisher, SNI Publications, Professor, Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA and Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|