1
|
Motawe ZY, Abdelmaboud SS, Breslin JW. Evaluation of Glycolysis and Mitochondrial Function in Endothelial Cells Using the Seahorse Analyzer. Methods Mol Biol 2024; 2711:241-256. [PMID: 37776463 PMCID: PMC11368073 DOI: 10.1007/978-1-0716-3429-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
Endothelial bioenergetics have emerged as a key regulator of endothelial barrier function. Glycolytic parameters have been linked to barrier enhancement, and interruption with mitochondrial complexes was shown to disrupt endothelial barrier. Therefore, a new technology that has been introduced to assess bioenergetics and metabolism has also made it possible to determine roles of specific energy production pathways in endothelial health. The Seahorse extracellular flux analysis by Agilent technologies is a state of the art tool that has been more frequently used to evaluate bioenergetics of endothelial cells. This chapter includes details about different assays that can be used to study endothelial cells using the Seahorse analyzer and how interpretation of the results can provide novel insight about endothelial metabolism.
Collapse
Affiliation(s)
- Zeinab Y Motawe
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Salma S Abdelmaboud
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
2
|
Das GC, Hollinger FB. GSK-3β as a Potential Coordinator of Anabolic and Catabolic Pathways in Hepatitis C Virus Insulin Resistance. Intervirology 2023; 67:6-18. [PMID: 38104537 PMCID: PMC10794973 DOI: 10.1159/000535787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
INTRODUCTION Chronic hepatitis C infection can result in insulin resistance (IR). We have previously shown that it occurs through the interaction of pathways for glucose homeostasis, insulin signaling, and autophagy. But it is not known how soon the pathways are activated and how IR is related to the signals generated by catabolic and anabolic conditions occurring in infected cells. We have extended our studies to a cell culture system mimicking acute infection and to downstream pathways involving energy-sensor AMPK and nutrient-sensor mTOR that are active in catabolic and anabolic processes within the infected cells. METHODS Huh7 liver cells in culture were infected with hepatitis C virus (HCV). We performed proteomics analysis of key proteins in infected cells by Western blotting and IP experiments, with or without IFNα exposure as a component of conventional therapeutic strategy. RESULTS We present evidence that (a) IRS-1 Ser312, Beclin-1, protein conjugate Atg12-Atg5 or GS Ser641 are up-regulated early in infection presumably by activating the same pathways as utilized for persistent infection; (b) Bcl-XL, an inhibitor of both autophagy and apoptosis, is present in a core complex with IRS-1 Ser312 and Beclin-1 during progression of IR; (c) AMPK level remains about the same in infected cells where it is activated by phosphorylation at Thr172 concomitant with increased autophagy, a hallmark of catabolic conditions; (d) an mTOR level that promotes anabolism is increased rather than decreased under an expanded autophagy; (e) hypophosphorylation of translational repressor 4E-BP1 downstream of mTOR is suggestive of reduced protein synthesis; and (f) β-catenin, is up-regulated but not phosphorylated suggesting indirectly our previous contention that its kinase, GSK-3β, is mostly in an inactive state. CONCLUSION We report that in the development of IR following chronic infection, anabolic and catabolic pathways are activated early, and the metabolic interaction occurs possibly in a core complex with IRS-1 Ser312, Beclin-1, and autophagy inhibitor Bcl-XL. Induction of autophagy is usually controlled by a two-edged mechanism acting in opposition under anabolic and catabolic conditions by AMPK/mTOR/4E-BP1 pathway with GSK-3β-mediated feedback loops. However, we have observed an up-regulation of mTOR along with an up-regulation of AMPK caused by HCV infection is a deviation from the normal scenario described above which might be of therapeutic interest.
Collapse
Affiliation(s)
- Gokul C Das
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - F Blaine Hollinger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Li S, Wang J, Tian X, Toufeeq S, Huang W. Immunometabolic regulation during the presence of microorganisms and parasitoids in insects. Front Immunol 2023; 14:905467. [PMID: 37818375 PMCID: PMC10560992 DOI: 10.3389/fimmu.2023.905467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Multicellular organisms live in environments containing diverse nutrients and a wide variety of microbial communities. On the one hand, the immune response of organisms can protect from the intrusion of exogenous microorganisms. On the other hand, the dynamic coordination of anabolism and catabolism of organisms is a necessary factor for growth and reproduction. Since the production of an immune response is an energy-intensive process, the activation of immune cells is accompanied by metabolic transformations that enable the rapid production of ATP and new biomolecules. In insects, the coordination of immunity and metabolism is the basis for insects to cope with environmental challenges and ensure normal growth, development and reproduction. During the activation of insect immune tissues by pathogenic microorganisms, not only the utilization of organic resources can be enhanced, but also the activated immune cells can usurp the nutrients of non-immune tissues by generating signals. At the same time, insects also have symbiotic bacteria in their body, which can affect insect physiology through immune-metabolic regulation. This paper reviews the research progress of insect immune-metabolism regulation from the perspective of insect tissues, such as fat body, gut and hemocytes. The effects of microorganisms (pathogenic bacteria/non-pathogenic bacteria) and parasitoids on immune-metabolism were elaborated here, which provide guidance to uncover immunometabolism mechanisms in insects and mammals. This work also provides insights to utilize immune-metabolism for the formulation of pest control strategies.
Collapse
Affiliation(s)
- Shirong Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Jing Wang
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Xing Tian
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Shahzad Toufeeq
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
4
|
Agrawal R, Reno CM, Sharma S, Christensen C, Huang Y, Fisher SJ. Insulin action in the brain regulates both central and peripheral functions. Am J Physiol Endocrinol Metab 2021; 321:E156-E163. [PMID: 34056920 PMCID: PMC8321819 DOI: 10.1152/ajpendo.00642.2020] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The brain has been traditionally thought to be insensitive to insulin, primarily because insulin does not stimulate glucose uptake/metabolism in the brain (as it does in classic insulin-sensitive tissues such as muscle, liver, and fat). However, over the past 20 years, research in this field has identified unique actions of insulin in the brain. There is accumulating evidence that insulin crosses into the brain and regulates central nervous system functions such as feeding, depression, and cognitive behavior. In addition, insulin acts in the brain to regulate systemic functions such as hepatic glucose production, lipolysis, lipogenesis, reproductive competence, and the sympathoadrenal response to hypoglycemia. Decrements in brain insulin action (or brain insulin resistance) can be observed in obesity, type 2 diabetes (T2DM), aging, and Alzheimer's disease (AD), indicating a possible link between metabolic and cognitive health. Here, we describe recent findings on the pleiotropic actions of insulin in the brain and highlight the precise sites, specific neuronal population, and roles for supportive astrocytic cells through which insulin acts in the brain. In addition, we also discuss how boosting brain insulin action could be a therapeutic option for people at an increased risk of developing metabolic and cognitive diseases such as AD and T2DM. Overall, this perspective article serves to highlight some of these key scientific findings, identify unresolved issues, and indicate future directions of research in this field that would serve to improve the lives of people with metabolic and cognitive dysfunctions.
Collapse
Affiliation(s)
- Rahul Agrawal
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Candace M Reno
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Sunny Sharma
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Camille Christensen
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Yiqing Huang
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Simon J Fisher
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
5
|
Bajgar A, Krejčová G, Doležal T. Polarization of Macrophages in Insects: Opening Gates for Immuno-Metabolic Research. Front Cell Dev Biol 2021; 9:629238. [PMID: 33659253 PMCID: PMC7917182 DOI: 10.3389/fcell.2021.629238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance and cachexia represent severe metabolic syndromes accompanying a variety of human pathological states, from life-threatening cancer and sepsis to chronic inflammatory states, such as obesity and autoimmune disorders. Although the origin of these metabolic syndromes has not been fully comprehended yet, a growing body of evidence indicates their possible interconnection with the acute and chronic activation of an innate immune response. Current progress in insect immuno-metabolic research reveals that the induction of insulin resistance might represent an adaptive mechanism during the acute phase of bacterial infection. In Drosophila, insulin resistance is induced by signaling factors released by bactericidal macrophages as a reflection of their metabolic polarization toward aerobic glycolysis. Such metabolic adaptation enables them to combat the invading pathogens efficiently but also makes them highly nutritionally demanding. Therefore, systemic metabolism has to be adjusted upon macrophage activation to provide them with nutrients and thus support the immune function. That anticipates the involvement of macrophage-derived systemic factors mediating the inter-organ signaling between macrophages and central energy-storing organs. Although it is crucial to coordinate the macrophage cellular metabolism with systemic metabolic changes during the acute phase of bacterial infection, the action of macrophage-derived factors may become maladaptive if chronic or in case of infection by an intracellular pathogen. We hypothesize that insulin resistance evoked by macrophage-derived signaling factors represents an adaptive mechanism for the mobilization of sources and their preferential delivery toward the activated immune system. We consider here the validity of the presented model for mammals and human medicine. The adoption of aerobic glycolysis by bactericidal macrophages as well as the induction of insulin resistance by macrophage-derived factors are conserved between insects and mammals. Chronic insulin resistance is at the base of many human metabolically conditioned diseases such as non-alcoholic steatohepatitis, atherosclerosis, diabetes, and cachexia. Therefore, revealing the original biological relevance of cytokine-induced insulin resistance may help to develop a suitable strategy for treating these frequent diseases.
Collapse
Affiliation(s)
- Adam Bajgar
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| | - Gabriela Krejčová
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| | - Tomáš Doležal
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| |
Collapse
|
6
|
Rahman MR, Islam T, Nicoletti F, Petralia MC, Ciurleo R, Fisicaro F, Pennisi M, Bramanti A, Demirtas TY, Gov E, Islam MR, Mussa BM, Moni MA, Fagone P. Identification of Common Pathogenetic Processes between Schizophrenia and Diabetes Mellitus by Systems Biology Analysis. Genes (Basel) 2021; 12:genes12020237. [PMID: 33562405 PMCID: PMC7916024 DOI: 10.3390/genes12020237] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Schizophrenia (SCZ) is a psychiatric disorder characterized by both positive symptoms (i.e., psychosis) and negative symptoms (such as apathy, anhedonia, and poverty of speech). Epidemiological data show a high likelihood of early onset of type 2 diabetes mellitus (T2DM) in SCZ patients. However, the molecular processes that could explain the epidemiological association between SCZ and T2DM have not yet been characterized. Therefore, in the present study, we aimed to identify underlying common molecular pathogenetic processes and pathways between SCZ and T2DM. To this aim, we analyzed peripheral blood mononuclear cell (PBMC) transcriptomic data from SCZ and T2DM patients, and we detected 28 differentially expressed genes (DEGs) commonly modulated between SCZ and T2DM. Inflammatory-associated processes and membrane trafficking pathways as common biological processes were found to be in common between SCZ and T2DM. Analysis of the putative transcription factors involved in the regulation of the DEGs revealed that STAT1 (Signal Transducer and Activator of Transcription 1), RELA (v-rel reticuloendotheliosis viral oncogene homolog A (avian)), NFKB1 (Nuclear Factor Kappa B Subunit 1), and ERG (ETS-related gene) are involved in the expression of common DEGs in SCZ and T2DM. In conclusion, we provide core molecular signatures and pathways that are shared between SCZ and T2DM, which may contribute to the epidemiological association between them.
Collapse
Affiliation(s)
- Md Rezanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh;
- Department of Biochemistry and Biotechnology, Khwaja Yunus Ali University, Enayetpur, Sirajganj 6751, Bangladesh;
| | - Tania Islam
- Department of Biochemistry and Biotechnology, Khwaja Yunus Ali University, Enayetpur, Sirajganj 6751, Bangladesh;
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (F.F.); (M.P.); (P.F.)
- Correspondence:
| | - Maria Cristina Petralia
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (M.C.P.); (R.C.); (A.B.)
| | - Rosella Ciurleo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (M.C.P.); (R.C.); (A.B.)
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (F.F.); (M.P.); (P.F.)
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (F.F.); (M.P.); (P.F.)
| | - Alessia Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (M.C.P.); (R.C.); (A.B.)
| | - Talip Yasir Demirtas
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana 01250, Turkey; (T.Y.D.); (E.G.)
| | - Esra Gov
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana 01250, Turkey; (T.Y.D.); (E.G.)
| | - Md Rafiqul Islam
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Bashair M. Mussa
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, Sydney, NSW 2052, Australia;
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (F.F.); (M.P.); (P.F.)
| |
Collapse
|
7
|
Grabia M, Markiewicz-Żukowska R. Nutritional Status of Pediatric Patients with Type 1 Diabetes Mellitus from Northeast Poland: A Case-Control Study. Diabetes Ther 2021; 12:329-343. [PMID: 33289859 PMCID: PMC7843824 DOI: 10.1007/s13300-020-00972-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/16/2020] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION A significant increase in the incidence of overweight and obesity is observed among children and adolescents. This problem began to occur not only in healthy populations, but also among young diabetics. The aim of the study was to assess the nutritional status of children and adolescents with type 1 diabetes mellitus (T1DM) compared to those in a control group of healthy subjects as well as to determine the influence of the type of insulin therapy used. METHODS The case-control study included 169 people aged 9-15 years. The study group (n = 85) consisted of Polish children with T1DM, and the control group (n = 84) consisted of healthy subjects. The assessment of the nutritional status included anthropometric measurements. Analysis of body composition was carried out by bioelectrical impedance analysis. To assess nutritional behavior a questionnaire was used. Approval was obtained from the ethics committee of the Medical University of Białystok (no. R-I-002/168/2017). RESULTS Median body mass index (BMI) value in the T1DM group was 19.2 kg/m2 and was statistically significantly (P < 0.05) higher than in the control group (17.8 kg/m2). Normal BMI was found in 90% of the individuals in the CSII group, while in the MDI group it was only 61%. The percentage of fat mass was 19.1% in the T1DM group and 17.6% in the healthy group. The percentage of muscle mass was 36.1% and 34.5%, respectively. The abdominal obesity according to waist circumference (above 90th percentile) turned out to be statistically significant (P < 0.01) and occurred more often in adolescents with T1DM (27%), while in the healthy group it was 12%. CONCLUSIONS The healthy individuals as well as the majority of the children and adolescents with type 1 diabetes mellitus were well nourished. People using personal insulin pumps showed better nutritional status than those using insulin pens.
Collapse
Affiliation(s)
- Monika Grabia
- Department of Bromatology, Medical University of Białystok, Białystok, Poland.
| | | |
Collapse
|
8
|
Wang J, Li C, Li J, Qin S, Liu C, Wang J, Chen Z, Wu J, Wang G. Development and internal validation of risk prediction model of metabolic syndrome in oil workers. BMC Public Health 2020; 20:1828. [PMID: 33256679 PMCID: PMC7706262 DOI: 10.1186/s12889-020-09921-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/18/2020] [Indexed: 01/28/2023] Open
Abstract
Background The prevalence of metabolic syndrome continues to rise sharply worldwide, seriously threatening people’s health. The optimal model can be used to identify people at high risk of metabolic syndrome as early as possible, to predict their risk, and to persuade them to change their adverse lifestyle so as to slow down and reduce the incidence of metabolic syndrome. Methods Design existing circumstances research. A total of 1468 workers from an oil company who participated in occupational health physical examination from April 2017 to October 2018 were included in this study. We established the Logistic regression model, the random forest model and the convolutional neural network model, and compared the prediction performance of the models according to the F1 score, sensitivity, accuracy and other indicators of the three models. Results The results showed that the accuracy of the three models was 82.49,95.98 and 92.03%, the sensitivity was 87.94,95.52 and 90.59%, the specificity was 74.54, 96.65 and 94.14%, the F1 score was 0.86,0.97 and 0.93, and the area under ROC curve was 0.88,0.96 and 0.92, respectively. The Brier score of the three models was 0.15, 0.08 and 0.12, Observed-expected ratio was 0.83, 0.97 and 1.13, and the Integrated Calibration Index was 0.075,0.073 and 0.074, respectively, and explained how the random forest model was used for individual disease risk score. Conclusions The study showed that the prediction performance of random forest model is better than other models, and the model has higher application value, which can better predict the risk of metabolic syndrome in oil workers, and provide corresponding theoretical basis for the health management of oil workers. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-020-09921-w.
Collapse
Affiliation(s)
- Jie Wang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Avenue, Caofeidian New Town, Tangshan City, Hebei Province, 063210, P.R. China
| | - Chao Li
- School of Public Health, North China University of Science and Technology, No.21 Bohai Avenue, Caofeidian New Town, Tangshan City, Hebei Province, 063210, P.R. China
| | - Jing Li
- School of Public Health, North China University of Science and Technology, No.21 Bohai Avenue, Caofeidian New Town, Tangshan City, Hebei Province, 063210, P.R. China
| | - Sheng Qin
- School of Public Health, North China University of Science and Technology, No.21 Bohai Avenue, Caofeidian New Town, Tangshan City, Hebei Province, 063210, P.R. China
| | - Chunlei Liu
- College of Science, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Jiaojiao Wang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Avenue, Caofeidian New Town, Tangshan City, Hebei Province, 063210, P.R. China
| | - Zhe Chen
- School of Public Health, North China University of Science and Technology, No.21 Bohai Avenue, Caofeidian New Town, Tangshan City, Hebei Province, 063210, P.R. China
| | - Jianhui Wu
- School of Public Health, North China University of Science and Technology, No.21 Bohai Avenue, Caofeidian New Town, Tangshan City, Hebei Province, 063210, P.R. China. .,Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan, Hebei, P.R. China.
| | - Guoli Wang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Avenue, Caofeidian New Town, Tangshan City, Hebei Province, 063210, P.R. China.,Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| |
Collapse
|
9
|
Petushkova AI, Zamyatnin AA. Redox-Mediated Post-Translational Modifications of Proteolytic Enzymes and Their Role in Protease Functioning. Biomolecules 2020; 10:biom10040650. [PMID: 32340246 PMCID: PMC7226053 DOI: 10.3390/biom10040650] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022] Open
Abstract
Proteolytic enzymes play a crucial role in metabolic processes, providing the cell with amino acids through the hydrolysis of multiple endogenous and exogenous proteins. In addition to this function, proteases are involved in numerous protein cascades to maintain cellular and extracellular homeostasis. The redox regulation of proteolysis provides a flexible dose-dependent mechanism for proteolytic activity control. The excessive reactive oxygen species (ROS) and reactive nitrogen species (RNS) in living organisms indicate pathological conditions, so redox-sensitive proteases can swiftly induce pro-survival responses or regulated cell death (RCD). At the same time, severe protein oxidation can lead to the dysregulation of proteolysis, which induces either protein aggregation or superfluous protein hydrolysis. Therefore, oxidative stress contributes to the onset of age-related dysfunction. In the present review, we consider the post-translational modifications (PTMs) of proteolytic enzymes and their impact on homeostasis.
Collapse
Affiliation(s)
- Anastasiia I. Petushkova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence:
| |
Collapse
|
10
|
NS398, a cyclooxygenase-2 inhibitor, reverses memory performance disrupted by imipramine in C57Bl/6J mice. Brain Res 2020; 1734:146741. [PMID: 32088181 DOI: 10.1016/j.brainres.2020.146741] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/21/2022]
Abstract
Imipramine has been widely used as an antidepressant in the clinic over the years. Unfortunately, it produces a detrimental effect on memory. At the same time, COX-2 inhibitors engagement in the mechanisms of memory formation, and synapse plastic changes has been well documented. Our previous studies have demonstrated the contribution of cyclooxygenase-2 (COX-2) inhibition to the parameters of the mGluR5 pathway in memory formation. Because chronic administration of imipramine has been shown to affect mGluR5, the purpose of this study was to verify the hypothesis of COX-2 pathway engagement in disrupting effects of imipramine. Imipramine is currently used as a reference compound, and therefore it seems important to decipher and understand mood-related pathways, as well as cognitive changes activated during its use. This study covers the examination of spatial, and motor parameters. To this end, C57Bl/6J mice received imipramine, and NS398 (a COX-2 inhibitor) alone, or in combination for 7 or 14 days. We performed the modified Barnes maze (MBM), modified rotarod (MR) tests, and electrophysiological studies. The harmful effect of imipramine on MBM learning was improved by NS398 use. The same modulatory role of the COX-2 inhibitor in procedural learning in the MR test was found. In conclusion, our data show the involvement of the COX-2 pathway in changes in the long-term memory, and procedural memory of C57Bl/6J mice after chronic imipramine treatment.
Collapse
|
11
|
Aguilar-López BA, Moreno-Altamirano MMB, Dockrell HM, Duchen MR, Sánchez-García FJ. Mitochondria: An Integrative Hub Coordinating Circadian Rhythms, Metabolism, the Microbiome, and Immunity. Front Cell Dev Biol 2020; 8:51. [PMID: 32117978 PMCID: PMC7025554 DOI: 10.3389/fcell.2020.00051] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/20/2020] [Indexed: 12/25/2022] Open
Abstract
There is currently some understanding of the mechanisms that underpin the interactions between circadian rhythmicity and immunity, metabolism and immune response, and circadian rhythmicity and metabolism. In addition, a wealth of studies have led to the conclusion that the commensal microbiota (mainly bacteria) within the intestine contributes to host homeostasis by regulating circadian rhythmicity, metabolism, and the immune system. Experimental studies on how these four biological domains interact with each other have mainly focused on any two of those domains at a time and only occasionally on three. However, a systematic analysis of how these four domains concurrently interact with each other seems to be missing. We have analyzed current evidence that signposts a role for mitochondria as a key hub that supports and integrates activity across all four domains, circadian clocks, metabolic pathways, the intestinal microbiota, and the immune system, coordinating their integration and crosstalk. This work will hopefully provide a new perspective for both hypothesis-building and more systematic experimental approaches.
Collapse
Affiliation(s)
- Bruno A Aguilar-López
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Hazel M Dockrell
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Francisco Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
12
|
Chycki J, Zajac A, Michalczyk M, Maszczyk A, Langfort J. Hormonal and metabolic substrate status in response to exercise in men of different phenotype. Endocr Connect 2019; 8:814-821. [PMID: 31137013 PMCID: PMC6590201 DOI: 10.1530/ec-19-0216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/28/2019] [Indexed: 01/23/2023]
Abstract
OBJECTIVES The present study verified the effect of moderate-to-high-intensity aerobic exercise on the endocrine response profile and adipose tissue in young healthy men with different phenotype characteristics. DESIGN Eighteen men were divided into three experimental groups with defined body components and specific physical fitness: Endurance phenotype - EP (n = 6; low body mass; low fat content; aerobic endurance trained), Athletic phenotype - AP (n = 6; high body mass; low fat content, resistance trained), Obesity phenotype - OP (n = 6; high body mass; high fat content, untrained). METHODS The participants performed an progressive exercise protocol on a treadmill (30% VO2max, 50% VO2max, 70% VO2max), separated by 45 s of passive rest for blood collection. RESULTS Plasma glucose oxidation increased in relation to exercise intensity, but to a greater extent in the AP group. The free fatty acids' plasma level decreased with a rise in exercise intensity, but with different kinetics in particular phenotypes. Plasma growth hormone increased after the cessation of exercise and was significantly higher in all groups 45 min into recovery compared to resting values. Plasma insulin decreased during exercise in all groups, but in the OP, the decrease was blunted. CONCLUSIONS The results indicate that the rate of lipolysis, hormonal and metabolic response to aerobic exercise depends on the individuals' phenotype. Thus, exercise type, duration and intensity have to be strictly individualized in relation to phenotype in order to reach optimal metabolic benefits.
Collapse
Affiliation(s)
- J Chycki
- Department of Sports Training, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
- Correspondence should be addressed to J Chycki:
| | - A Zajac
- Department of Sports Training, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - M Michalczyk
- Department of Sports Nutrition, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - A Maszczyk
- Department of Methodology and Statistics, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - J Langfort
- Department of Sports Nutrition, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| |
Collapse
|
13
|
Schwartsburd P. Cancer-Induced Reprogramming of Host Glucose Metabolism: "Vicious Cycle" Supporting Cancer Progression. Front Oncol 2019; 9:218. [PMID: 31019893 PMCID: PMC6458235 DOI: 10.3389/fonc.2019.00218] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022] Open
Abstract
Unrestricted cancer growth requires permanent supply of glucose that can be obtained from cancer-mediated reprogramming of glucose metabolism in the cancer-bearing host. The pathological mechanisms by which cancer cells exert their negative influence on host glucose metabolism are largely unknown. This paper proposes a mechanism of metabolic and hormonal changes that may favor glucose delivery to tumor (not host) cells by creating a cancer-host "vicious cycle" whose prolonged action drives cancer progression and promotes host cachexia. To verify this hypothesis, a feedback model of host-cancer interactions that create the "vicious cycle" via cancer-induced reprogramming of host glucose metabolism is proposed. This model is capable of answering some crucial questions as to how anabolic cancer cells can reprogram the systemic glucose metabolism and why these pathways were not observed in pregnancy. The current paper helps to better understanding a pathogenesis of cancer progression and identify hormonal/metabolic targets for anti-cancer treatment.
Collapse
Affiliation(s)
- Polina Schwartsburd
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
14
|
Paganelli R, Petrarca C, Di Gioacchino M. Biological clocks: their relevance to immune-allergic diseases. Clin Mol Allergy 2018; 16:1. [PMID: 29344005 PMCID: PMC5763605 DOI: 10.1186/s12948-018-0080-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/02/2018] [Indexed: 01/24/2023] Open
Abstract
The 2017 Nobel Prize for Physiology or Medicine, awarded for the discoveries made in the past 15 years on the genetic and molecular mechanisms regulating many physiological functions, has renewed the attention to the importance of circadian rhythms. These originate from a central pacemaker in the suprachiasmatic nucleus in the brain, photoentrained via direct connection with melanopsin containing, intrinsically light-sensitive retinal ganglion cells, and it projects to periphery, thus creating an inner circadian rhythm. This regulates several activities, including sleep, feeding times, energy metabolism, endocrine and immune functions. Disturbances of these rhythms, mainly of wake/sleep, hormonal secretion and feeding, cause decrease in quality of life, as well as being involved in development of obesity, metabolic syndrome and neuropsychiatric disorders. Most immunological functions, from leukocyte numbers, activity and cytokine secretion undergo circadian variations, which might affect susceptibility to infections. The intensity of symptoms and disease severity show a 24 h pattern in many immunological and allergic diseases, including rheumatoid arthritis, bronchial asthma, atopic eczema and chronic urticaria. This is accompanied by altered sleep duration and quality, a major determinant of quality of life. Shift work and travel through time zones as well as artificial light pose new health threats by disrupting the circadian rhythms. Finally, the field of chronopharmacology uses these concepts for delivering drugs in synchrony with biological rhythms.
Collapse
Affiliation(s)
- Roberto Paganelli
- 1Dipartimento di Medicina e Scienze dell'invecchiamento, Università "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini, 5, 66013 Chieti, Italy.,Ce.S.I.-Me.T., Chieti, Italy
| | - Claudia Petrarca
- 1Dipartimento di Medicina e Scienze dell'invecchiamento, Università "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini, 5, 66013 Chieti, Italy.,Ce.S.I.-Me.T., Chieti, Italy
| | - Mario Di Gioacchino
- 1Dipartimento di Medicina e Scienze dell'invecchiamento, Università "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini, 5, 66013 Chieti, Italy.,Ce.S.I.-Me.T., Chieti, Italy
| |
Collapse
|