1
|
Mehra V, Chhetri JB, Ali S, Roddie C. The Emerging Role of Induced Pluripotent Stem Cells as Adoptive Cellular Immunotherapeutics. BIOLOGY 2023; 12:1419. [PMID: 37998018 PMCID: PMC10669440 DOI: 10.3390/biology12111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
Adoptive cell therapy (ACT) has transformed the treatment landscape for cancer and infectious disease through the investigational use of chimeric antigen receptor T-cells (CAR-Ts), tumour-infiltrating lymphocytes (TILs) and viral-specific T-cells (VSTs). Whilst these represent breakthrough treatments, there are subsets of patients who fail to respond to autologous ACT products. This is frequently due to impaired patient T-cell function or "fitness" as a consequence of prior treatments and age, and can be exacerbated by complex manufacturing protocols. Further, the manufacture of autologous, patient-specific products is time-consuming, expensive and non-standardised. Induced pluripotent stem cells (iPSCs) as an allogeneic alternative to patient-specific products can potentially overcome the issues outlined above. iPSC technology provides an unlimited source of rejuvenated iPSC-derived T-cells (T-iPSCs) or natural killer (NK) cells (NK-iPSCs), and in the context of the growing field of allogeneic ACT, iPSCs have enormous potential as a platform for generating off-the-shelf, standardised, "fit" therapeutics for patients. In this review, we evaluate current and future applications of iPSC technology in the CAR-T/NK, TIL and VST space. We discuss current and next-generation iPSC manufacturing protocols, and report on current iPSC-based adoptive therapy clinical trials to elucidate the potential of this technology as the future of ACT.
Collapse
Affiliation(s)
| | | | | | - Claire Roddie
- Research Department of Haematology, Cancer Institute, University College London, Paul O’Gorman Building, London WCIE 6DD, UK
| |
Collapse
|
2
|
Moy AB, Kamath A, Ternes S, Kamath J. The Challenges to Advancing Induced Pluripotent Stem Cell-Dependent Cell Replacement Therapy. MEDICAL RESEARCH ARCHIVES 2023; 11:4784. [PMID: 38188933 PMCID: PMC10768945 DOI: 10.18103/mra.v11i11.4784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Induced pluripotent stem cells (iPSC) represent a potentially exciting regenerative-medicine cell therapy for several chronic conditions such as macular degeneration, soft tissue and orthopedic conditions, cardiopulmonary disease, cancer, neurodegenerative disorders and metabolic disorders. The field of iPSC therapeutics currently exists at an early stage of development. There are several important stakeholders that include academia, industry, regulatory agencies, financial institutions and patients who are committed to advance the field. Yet, unlike more established therapeutic modalities like small and large molecules, iPSC therapies pose significant unique challenges with respect to safety, potency, genetic stability, immunogenicity, tumorgenicity, cell reproducibility, scalability and engraftment. The aim of this review article is to highlight the unique technical challenges that need to be addressed before iPSC technology can be fully realized as a cell replacement therapy. Additionally, this manuscript offers some potential solutions and identifies areas of focus that should be considered in order for the iPSC field to achieve its promise. The scope of this article covers the following areas: (1) the impact of different iPSC reprogramming methods on immunogenicity and tumorigenicity; (2) the effect of genetic instability on cell reproducibility and differentiation; (3) the role of growth factors and post-translational modification on differentiation and cell scalability; (4) the potential use of gene editing in improving iPSC differentiation; (5) the advantages and disadvantages between autologous and allogeneic cell therapy; (6) the regulatory considerations in developing a viable and reproducible cell product; and (7) the impact of local tissue inflammation on cell engraftment and cell viability.
Collapse
Affiliation(s)
- Alan B. Moy
- Cellular Engineering Technologies, Inc. Coralville, IA, 52241
- John Paul II Medical Research Institute, Coralville, IA 52241
| | - Anant Kamath
- Cellular Engineering Technologies, Inc. Coralville, IA, 52241
| | - Sara Ternes
- Cellular Engineering Technologies, Inc. Coralville, IA, 52241
| | - Jay Kamath
- John Paul II Medical Research Institute, Coralville, IA 52241
| |
Collapse
|
3
|
Soman SS, Vijayavenkataraman S. Applications of 3D Bioprinted-Induced Pluripotent Stem Cells in Healthcare. Int J Bioprint 2020; 6:280. [PMID: 33088994 PMCID: PMC7557348 DOI: 10.18063/ijb.v6i4.280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) technology and advancements in three-dimensional (3D) bioprinting technology enable scientists to reprogram somatic cells to iPSCs and 3D print iPSC-derived organ constructs with native tissue architecture and function. iPSCs and iPSC-derived cells suspended in hydrogels (bioinks) allow to print tissues and organs for downstream medical applications. The bioprinted human tissues and organs are extremely valuable in regenerative medicine as bioprinting of autologous iPSC-derived organs eliminates the risk of immune rejection with organ transplants. Disease modeling and drug screening in bioprinted human tissues will give more precise information on disease mechanisms, drug efficacy, and drug toxicity than experimenting on animal models. Bioprinted iPSC-derived cancer tissues will aid in the study of early cancer development and precision oncology to discover patient-specific drugs. In this review, we present a brief summary of the combined use of two powerful technologies, iPSC technology, and 3D bioprinting in health-care applications.
Collapse
Affiliation(s)
- Soja Saghar Soman
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Sanjairaj Vijayavenkataraman
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE.,Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, NY, USA
| |
Collapse
|
4
|
Moy A. Creating Catholic Regenerative Medicine Organizations in a Secular Biotechnology Field: A Physician-Scientist Experience. LINACRE QUARTERLY 2020; 87:218-222. [PMID: 32549639 DOI: 10.1177/0024363919890941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
One aspect of the progressive secularization of biotechnology is the use of the by-products from abortion and the use of human embryos. These morally illicit cells and tissue create a significant moral and economic challenge for Catholics at different stages of their career. A practicing Catholic physician or scientific professional will face the dilemma of how to reconcile their Catholic identity with their profession. While the Catechism is clear on what actions Catholics should not pursue, there has been less religious guidance on what activities Catholics should proactively pursue in their professional life to advance the Catholic culture. This essay will examine these themes through the lens of a true story of the author's experience in starting Catholic for-profit and nonprofit biotechnology organizations. Summary Abortion and the destruction of human embryos create a moral dilemma for Catholics at different stages of a physician or scientist's career. A practicing Catholic physician or scientist must reconcile their Catholic identity with their profession. While there is little professional guidance on how to advance the culture, Jesus says that one must take up the cross and direct their God-given gifts towards His name. The only way to succeed and thrive in a secular healthcare environment is to emulate Jesus by putting aside their own self-interest; pray for courage against ridicule; accept risk; and pursue scientific and medical excellence.
Collapse
Affiliation(s)
- Alan Moy
- Cellular Engineering Technologies Inc., Coralville, IA, USA.,John Paul II Medical Research Institute, Coralville, IA, USA
| |
Collapse
|
5
|
Targeting cell plasticity for regeneration: From in vitro to in vivo reprogramming. Adv Drug Deliv Rev 2020; 161-162:124-144. [PMID: 32822682 DOI: 10.1016/j.addr.2020.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
The discovery of induced pluripotent stem cells (iPSCs), reprogrammed to pluripotency from somatic cells, has transformed the landscape of regenerative medicine, disease modelling and drug discovery pipelines. Since the first generation of iPSCs in 2006, there has been enormous effort to develop new methods that increase reprogramming efficiency, and obviate the need for viral vectors. In parallel to this, the promise of in vivo reprogramming to convert cells into a desired cell type to repair damage in the body, constitutes a new paradigm in approaches for tissue regeneration. This review article explores the current state of reprogramming techniques for iPSC generation with a specific focus on alternative methods that use biophysical and biochemical stimuli to reduce or eliminate exogenous factors, thereby overcoming the epigenetic barrier towards vector-free approaches with improved clinical viability. We then focus on application of iPSC for therapeutic approaches, by giving an overview of ongoing clinical trials using iPSCs for a variety of health conditions and discuss future scope for using materials and reagents to reprogram cells in the body.
Collapse
|
6
|
Wang AYL, Loh CYY. Episomal Induced Pluripotent Stem Cells: Functional and Potential Therapeutic Applications. Cell Transplant 2019; 28:112S-131S. [PMID: 31722555 PMCID: PMC7016470 DOI: 10.1177/0963689719886534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/11/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022] Open
Abstract
The term episomal induced pluripotent stem cells (EiPSCs) refers to somatic cells that are reprogrammed into induced pluripotent stem cells (iPSCs) using non-integrative episomal vector methods. This reprogramming process has a better safety profile compared with integrative methods using viruses. There is a current trend toward using episomal plasmid reprogramming to generate iPSCs because of the improved safety profile. Clinical reports of potential human cell sources that have been successfully reprogrammed into EiPSCs are increasing, but no review or summary has been published. The functional applications of EiPSCs and their potential uses in various conditions have been described, and these may be applicable to clinical scenarios. This review summarizes the current direction of EiPSC research and the properties of these cells with the aim of explaining their potential role in clinical applications and functional restoration.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- *Both the authors contributed equally to this article
| | - Charles Yuen Yung Loh
- St Andrew’s Center for Burns and Plastic Surgery, Chelmsford, United Kingdom
- *Both the authors contributed equally to this article
| |
Collapse
|
7
|
Vitillo L, Tovell VE, Coffey P. Treatment of Age-Related Macular Degeneration with Pluripotent Stem Cell-Derived Retinal Pigment Epithelium. Curr Eye Res 2019; 45:361-371. [DOI: 10.1080/02713683.2019.1691237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Loriana Vitillo
- The London Project to Cure Blindness, Institute of Ophthalmology, University College London (UCL), London, UK
| | - Victoria E. Tovell
- The London Project to Cure Blindness, Institute of Ophthalmology, University College London (UCL), London, UK
| | - Pete Coffey
- The London Project to Cure Blindness, Institute of Ophthalmology, University College London (UCL), London, UK
- Center for Stem Cell Biology and Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
8
|
Kamath A, Ternes S, McGowan S, Moy AB. Virus-free and oncogene-free induced pluripotent stem cell reprogramming in cord blood and peripheral blood in patients with lung disease. Regen Med 2018; 13:889-915. [PMID: 30488785 DOI: 10.2217/rme-2018-0041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM A virus- and oncogene-free induced pluripotent stem cell (iPSC) reprogramming method was developed with cord blood-derived mononuclear cells (CBDMNC) and peripheral blood mononuclear cells (PBMNC) from patients with genetic lung diseases. METHOD iPSC reprogramming used small molecules, hematopoietic stem cell (HSC) expansion media and episomal vectors that lacked Myc and Lin28. RESULTS All iPSC colonies were fully reprogrammed based on SSEA4 expression. A total of 300,000 CBDMNC was the optimal cell number for cell reprogramming, which was associated with a 13-fold increase in CD34+ cells upon exposure to HSC media. Cell reprogramming was not observed in the absence of HSC expansion media. The method also reprogrammed PBMNC in patients with cystic fibrosis or α-1 antitrypsin deficiency. Oncogene-free iPSC cell lines differentiated into all three germ cell lineages. CONCLUSION This iPSC reprogramming approach satisfies an important regulatory requirement for iPSC-based cell therapies with lower clinical risk from CBDMNC and PBMNC.
Collapse
Affiliation(s)
- Anant Kamath
- Cellular Engineering Technologies (CET), Inc., Coralville, IA, 52241, USA.,The John Paul II Medical Research Institute (JP2MRI), Iowa City, IA, 52241, USA
| | - Sara Ternes
- The John Paul II Medical Research Institute (JP2MRI), Iowa City, IA, 52241, USA
| | - Stephen McGowan
- Division of Pulmonary, Critical Care & Occupational Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Alan B Moy
- Cellular Engineering Technologies (CET), Inc., Coralville, IA, 52241, USA.,The John Paul II Medical Research Institute (JP2MRI), Iowa City, IA, 52241, USA.,Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52214, USA
| |
Collapse
|
9
|
Welcome to volume 4 of Future Science OA. Future Sci OA 2017; 4:FSO261. [PMID: 29255629 PMCID: PMC5729593 DOI: 10.4155/fsoa-2017-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/05/2017] [Indexed: 11/17/2022] Open
|