1
|
Zhou Z“Z, Si Y, Zhang J, Chen K, George A, Kim S, Zhou L, Liu X“M. A Dual-Payload Antibody-Drug Conjugate Targeting CD276/B7-H3 Elicits Cytotoxicity and Immune Activation in Triple-Negative Breast Cancer. Cancer Res 2024; 84:3848-3863. [PMID: 39186778 PMCID: PMC11565169 DOI: 10.1158/0008-5472.can-23-4099] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/30/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and heterogeneous disease that often relapses following treatment with standard radiotherapies and cytotoxic chemotherapies. Combination therapies have potential for treating refractory metastatic TNBC. In this study, we aimed to develop an antibody-drug conjugate with dual payloads (DualADC) as a chemoimmunotherapy for TNBC. The overexpression of an immune checkpoint transmembrane CD276 (also known as B7-H3) was associated with angiogenesis, metastasis, and immune tolerance in more than 60% of patients with TNBC. Development of a mAb capable of targeting the extracellular domain of surface CD276 enabled delivery of payloads to tumors, and a platform was established for concurrent conjugation of a traditional cytotoxic payload and an immunoregulating Toll-like receptor 7/8 agonist to the CD276 mAb. The DualADC effectively killed multiple TNBC subtypes, significantly enhanced immune functions in the tumor microenvironment, and reduced tumor burden by up to 90% to 100% in animal studies. Single-cell RNA sequencing, multiplex cytokine analysis, and histology elucidated the impact of treatment on tumor cells and the immune landscape. This study suggests that the developed DualADC could represent a promising targeted chemoimmunotherapy for TNBC. Significance: An anti-CD276 monoclonal antibody conjugated with both a cytotoxic drug and an immune boosting reagent effectively targets triple-negative breast cancer by inducing tumor cell death and stimulating immune cell infiltration.
Collapse
Affiliation(s)
- Zhuoxin “Zora” Zhou
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Yingnan Si
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Jiashuai Zhang
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Kai Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Ashley George
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Seulhee Kim
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Lufang Zhou
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Xiaoguang “Margaret” Liu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
2
|
Vitharana S, Stillahn JM, Katayama DS, Henry CS, Manning MC. Application of Formulation Principles to Stability Issues Encountered During Processing, Manufacturing, and Storage of Drug Substance and Drug Product Protein Therapeutics. J Pharm Sci 2023; 112:2724-2751. [PMID: 37572779 DOI: 10.1016/j.xphs.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The field of formulation and stabilization of protein therapeutics has become rather extensive. However, most of the focus has been on stabilization of the final drug product. Yet, proteins experience stress and degradation through the manufacturing process, starting with fermentaition. This review describes how formulation principles can be applied to stabilize biopharmaceutical proteins during bioprocessing and manufacturing, considering each unit operation involved in prepration of the drug substance. In addition, the impact of the container on stabilty is discussed as well.
Collapse
Affiliation(s)
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO 80534, USA; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
3
|
Yang Y, You M, Chen F, Jia T, Chen Y, Zhou B, Mi Q, An Z, Luo W, Xia N. Efficient development of a stable cell pool for antibody production using a single plasmid. J Biochem 2018; 163:391-398. [PMID: 29361116 DOI: 10.1093/jb/mvy007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/07/2017] [Indexed: 01/02/2023] Open
Abstract
Therapeutic antibodies are the fastest growing group of biopharmaceuticals. Evaluation of drug candidates requires a sufficient amount of antibodies. Production of antibodies with stable cell pools is an efficient strategy to produce grams of proteins for drug candidate selection. Many methods have been described for developing stable cell pools for antibody expression. However, most of the reported methods are laborious due to the low frequency of high producers. In this study, we determined optimal vectors and screening parameters to develop a strategy for efficient construction of stable antibody expressing cell pools. The cell pool constructed using the optimized strategy consistently yielded a higher expression titer, up to 10-fold improvement. Further, this method resulted in a higher ratio of the cell pools with the main product peak above 95% as assessed by size-exclusion chromatography. High producers could be obtained by means of screening five 96-well plates. This strategy will greatly reduce clone-screening size during Clinical Lead Selection. This study provides a platform with efficient design of plasmids and screening strategies for significant cost and labour savings in high expression of two-subunit proteins such as antibodies.
Collapse
Affiliation(s)
- Yi Yang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, People's Republic of China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102, People's Republic of China
| | - Min You
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, People's Republic of China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102, People's Republic of China
| | - Fentian Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, People's Republic of China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102, People's Republic of China
| | - Tianrong Jia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, People's Republic of China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102, People's Republic of China
| | - Yuanzhi Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, People's Republic of China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102, People's Republic of China
| | - Bing Zhou
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, People's Republic of China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102, People's Republic of China
| | - Qingyu Mi
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, People's Republic of China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102, People's Republic of China
| | - Zhiqiang An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102, People's Republic of China
- Texas Therapeutics Institute, The Brown Foundation of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wenxin Luo
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, People's Republic of China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102, People's Republic of China
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, People's Republic of China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102, People's Republic of China
| |
Collapse
|
4
|
Gupta SK, Shukla P. Sophisticated Cloning, Fermentation, and Purification Technologies for an Enhanced Therapeutic Protein Production: A Review. Front Pharmacol 2017; 8:419. [PMID: 28725194 PMCID: PMC5495827 DOI: 10.3389/fphar.2017.00419] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/13/2017] [Indexed: 11/27/2022] Open
Abstract
The protein productions strategies are crucial towards the development of application based research and elucidating the novel purification strategies for industrial production. Currently, there are few innovative avenues are studies for cloning, upstream, and purification through efficient bioprocess development. Such strategies are beneficial for industries as well as proven to be vital for effectual therapeutic protein development. Though, these techniques are well documented, but, there is scope of addition to current knowledge with novel and new approaches and it will pave new avenues in production of recombinant microbial and non-microbial proteins including secondary metabolites. In this review, we have focussed on the recent development in clone selection, various modern fermentation and purification technologies and future directions in these emerging areas. Moreover, we have also highlighted notable perspectives and challenges involved in the bioengineering of such proteins, including quality by design, gene editing and pioneering ideas. The biopharmaceutical industries continue to shift towards more flexible, automated platforms and economical product development, which in turn can help in developing the cost effective processes and affordable drug development for a large community.
Collapse
Affiliation(s)
- Sanjeev K Gupta
- Advanced Biotech Lab, Ipca Laboratories Ltd.,Mumbai, India.,Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand UniversityRohtak, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand UniversityRohtak, India
| |
Collapse
|
5
|
DoE based integration approach of upstream and downstream processing regarding HCP and ATPE as harvest operation. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.06.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Kaiser SC, Kraume M, Eibl D, Eibl R. Single-Use Bioreactors for Animal and Human Cells. CELL ENGINEERING 2015. [DOI: 10.1007/978-3-319-10320-4_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Kyriakopoulos S, Kontoravdi C. A framework for the systematic design of fed-batch strategies in mammalian cell culture. Biotechnol Bioeng 2014; 111:2466-76. [PMID: 24975682 DOI: 10.1002/bit.25319] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/10/2014] [Accepted: 06/17/2014] [Indexed: 01/20/2023]
Abstract
A methodology to calculate the required amount of amino acids (a.a.) and glucose in feeds for animal cell culture from monitoring their levels in batch experiments is presented herein. Experiments with the designed feeds on an antibody-producing Chinese hamster ovary cell line resulted in a 3-fold increase in titer compared to batch culture. Adding 40% more nutrients to the same feed further increases the yield to 3.5 higher than in batch culture. Our results show that above a certain threshold there is no linear correlation between nutrient addition and the integral of viable cell concentration. In addition, although high ammonia levels hinder cell growth, they do not appear to affect specific antibody productivity, while we hypothesize that high extracellular lactate concentration is the cause for the metabolic shift towards lactate consumption for the cell line used. Overall, the performance of the designed feeds is comparable to that of a commercial feed that was tested in parallel. Expanding this approach to more nutrients, as well as changing the ratio of certain amino acids as informed by flux balance analysis, could achieve even higher yields.
Collapse
Affiliation(s)
- Sarantos Kyriakopoulos
- Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | | |
Collapse
|
8
|
Gronemeyer P, Ditz R, Strube J. Trends in Upstream and Downstream Process Development for Antibody Manufacturing. Bioengineering (Basel) 2014; 1:188-212. [PMID: 28955024 DOI: 10.3390/bioengineering1040188] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/12/2014] [Accepted: 09/29/2014] [Indexed: 01/08/2023] Open
Abstract
A steady increase of product titers and the corresponding change in impurity composition represent a challenge for development and optimization of antibody production processes. Additionally, increasing demands on product quality result in higher complexity of processes and analytics, thereby increasing the costs for product work-up. Concentration and composition of impurities are critical for efficient process development. These impurities can show significant variations, which primarily depend on culture conditions. They have a major impact on the work-up strategy and costs. The resulting "bottleneck" in downstream processing requires new optimization, technology and development approaches. These include the optimization and adaptation of existing unit operations respective to the new separation task, the assessment of alternative separation technologies and the search for new methods in process development. This review presents an overview of existing methods for process optimization and integration and indicates new approaches for future developments.
Collapse
Affiliation(s)
- Petra Gronemeyer
- Institute for Separation and Process Technology, Clausthal University of Technology, Leibnizstraße 15, D-38678 Clausthal-Zellerfeld, Germany.
| | - Reinhard Ditz
- Institute for Separation and Process Technology, Clausthal University of Technology, Leibnizstraße 15, D-38678 Clausthal-Zellerfeld, Germany.
| | - Jochen Strube
- Institute for Separation and Process Technology, Clausthal University of Technology, Leibnizstraße 15, D-38678 Clausthal-Zellerfeld, Germany.
| |
Collapse
|