1
|
Cui Y, Zhang J, Zhang G. The Potential Strategies for Overcoming Multidrug Resistance and Reducing Side Effects of Monomer Tubulin Inhibitors for Cancer Therapy. Curr Med Chem 2024; 31:1874-1895. [PMID: 37349994 DOI: 10.2174/0929867330666230622142505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/26/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Tubulin is an essential target in tumor therapy, and this is attributed to its ability to target MT dynamics and interfere with critical cellular functions, including mitosis, cell signaling, and intracellular trafficking. Several tubulin inhibitors have been approved for clinical application. However, the shortcomings, such as drug resistance and toxic side effects, limit its clinical application. Compared with single-target drugs, multi-target drugs can effectively improve efficacy to reduce side effects and overcome the development of drug resistance. Tubulin protein degraders do not require high concentrations and can be recycled. After degradation, the protein needs to be resynthesized to regain function, which significantly delays the development of drug resistance. METHODS Using SciFinder® as a tool, the publications about tubulin-based dual-target inhibitors and tubulin degraders were surveyed with an exclusion of those published as patents. RESULTS This study presents the research progress of tubulin-based dual-target inhibitors and tubulin degraders as antitumor agents to provide a reference for developing and applying more efficient drugs for cancer therapy. CONCLUSION The multi-target inhibitors and protein degraders have shown a development prospect to overcome multidrug resistance and reduce side effects in the treatment of tumors. Currently, the design of dual-target inhibitors for tubulin needs to be further optimized, and it is worth further clarifying the detailed mechanism of protein degradation.
Collapse
Affiliation(s)
- Yingjie Cui
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, P.R. China
| | - Jing Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, P.R. China
| | - Guifang Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, P.R. China
| |
Collapse
|
2
|
Ukey S, Choudhury C, Sharma P. Identification of unique subtype-specific interaction features in Class II zinc-dependent HDAC subtype binding pockets: A computational study. J Biosci 2021. [DOI: 10.1007/s12038-021-00197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Adhikari N, Jha T, Ghosh B. Dissecting Histone Deacetylase 3 in Multiple Disease Conditions: Selective Inhibition as a Promising Therapeutic Strategy. J Med Chem 2021; 64:8827-8869. [PMID: 34161101 DOI: 10.1021/acs.jmedchem.0c01676] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The acetylation of histone and non-histone proteins has been implicated in several disease states. Modulation of such epigenetic modifications has therefore made histone deacetylases (HDACs) important drug targets. HDAC3, among various class I HDACs, has been signified as a potentially validated target in multiple diseases, namely, cancer, neurodegenerative diseases, diabetes, obesity, cardiovascular disorders, autoimmune diseases, inflammatory diseases, parasitic infections, and HIV. However, only a handful of HDAC3-selective inhibitors have been reported in spite of continuous efforts in design and development of HDAC3-selective inhibitors. In this Perspective, the roles of HDAC3 in various diseases as well as numerous potent and HDAC3-selective inhibitors have been discussed in detail. It will surely open up a new vista in the discovery of newer, more effective, and more selective HDAC3 inhibitors.
Collapse
Affiliation(s)
- Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata, 700032 West Bengal, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| |
Collapse
|
4
|
Sarojini V, Cameron AJ, Varnava KG, Denny WA, Sanjayan G. Cyclic Tetrapeptides from Nature and Design: A Review of Synthetic Methodologies, Structure, and Function. Chem Rev 2019; 119:10318-10359. [PMID: 31418274 DOI: 10.1021/acs.chemrev.8b00737] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small cyclic peptides possess a wide range of biological properties and unique structures that make them attractive to scientists working in a range of areas from medicinal to materials chemistry. However, cyclic tetrapeptides (CTPs), which are important members of this family, are notoriously difficult to synthesize. Various synthetic methodologies have been developed that enable access to natural product CTPs and their rationally designed synthetic analogues having novel molecular structures. These methodologies include the use of reversible protecting groups such as pseudoprolines that restrict conformational freedom, ring contraction strategies, on-resin cyclization approaches, and optimization of coupling reagents and reaction conditions such as temperature and dilution factors. Several fundamental studies have documented the impacts of amino acid configurations, N-alkylation, and steric bulk on both synthetic success and ensuing conformations. Carefully executed retrosynthetic ring dissection and the unique structural features of the linear precursor sequences that result from the ring dissection are crucial for the success of the cyclization step. Other factors that influence the outcome of the cyclization step include reaction temperature, solvent, reagents used as well as dilution levels. The purpose of this review is to highlight the current state of affairs on naturally occurring and rationally designed cyclic tetrapeptides, including strategies investigated for their syntheses in the literature, the conformations adopted by these molecules, and specific examples of their function. Using selected examples from the literature, an in-depth discussion of the synthetic techniques and reaction parameters applied for the successful syntheses of 12-, 13-, and 14-membered natural product CTPs and their novel analogues are presented, with particular focus on the cyclization step. Selected examples of the three-dimensional structures of cyclic tetrapeptides studied by NMR, and X-ray crystallography are also included.
Collapse
Affiliation(s)
- Vijayalekshmi Sarojini
- School of Chemical Sciences and the Centre for Green Chemical Science , University of Auckland , Auckland 1142 , New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology , Wellington 6140 , New Zealand
| | - Alan J Cameron
- School of Chemical Sciences and the Centre for Green Chemical Science , University of Auckland , Auckland 1142 , New Zealand
| | - Kyriakos G Varnava
- School of Chemical Sciences and the Centre for Green Chemical Science , University of Auckland , Auckland 1142 , New Zealand
| | | | - Gangadhar Sanjayan
- Division of Organic Chemistry , CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road , Pune 411 008 , India
| |
Collapse
|
5
|
Abstract
Epigenetic reprogramming plays a crucial role in the tumorigenicity and maintenance of tumor-specific gene expression that especially occurs through DNA methylation and/or histone modifications. It has well-defined mechanisms. It is known that alterations in the DNA methylation pattern and/or the loss of specific histone acetylation/methylation markers are related to several hallmarks of cancer, such as drug resistance, stemness, epithelial-mesenchymal transition, and metastasis. It has also recently been highlighted that epigenetic alterations are critical for the regulation of the stemlike properties of cancer cells (tumor-initiating cells; cancer stem cells). Cancer stem cells are thought to be responsible for the recurrence of cancer which makes the patient return to the clinic with metastatic tumor tissue. Hence, the dysregulation of epigenetic machinery represents potential new therapeutic targets. Therefore, compounds with epigenetic activities have become crucial for developing new therapy regimens (e.g., antimetastatic agents) in the fight against cancer. Here, we review the epigenetic modifiers that have already been used in the clinic and/or in clinical trials, related preclinical studies in cancer therapy, and the smart combination strategies that target cancer stem cells along with the other cancer cells. The emerging role of epitranscriptome (RNA epigenetic) in cancer therapy has also been included in this review as a new avenue and potential target for the better management of cancer-beneficial epigenetic machinery.
Collapse
Affiliation(s)
- Remzi Okan Akar
- Department of Cancer Biology and Pharmacology, Institute of Health Sciences, İstinye University, İstanbul, Turkey
| | - Selin Selvi
- Department of Cancer Biology and Pharmacology, Institute of Health Sciences, İstinye University, İstanbul, Turkey
| | - Engin Ulukaya
- Department of Medical Biochemistry, Faculty of Medicine, İstinye University, İstanbul, Turkey
| | - Nazlıhan Aztopal
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, İstinye University, İstanbul, Turkey
| |
Collapse
|
6
|
Abstract
Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.
Collapse
Affiliation(s)
- Tan Boon Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jhin Jieh Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Medicine, National University of Singapore, 14 Medical Drive #12-01, Singapore, 117599 Singapore
| |
Collapse
|
7
|
Zhang Y, Li X, Hou J, Huang Y, Xu W. Design, synthesis, and antitumor evaluation of histone deacetylase inhibitors with L-phenylglycine scaffold. Drug Des Devel Ther 2015; 9:5553-5567. [PMID: 26504374 PMCID: PMC4603714 DOI: 10.2147/dddt.s94037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In our previous research, a novel series of histone deacetylase (HDAC) inhibitors with L-phenylglycine scaffold were designed and synthesized, among which amides D3 and D7 and ureido D18 were far superior to the positive control (suberoylanilide hydroxamic acid [SAHA]) in HDAC inhibition, but were only comparable to SAHA in antiproliferation on tumor cell lines. Herein, further structural derivation of lead compounds D3, D7, and D18 was carried out to improve their cellular activities. Most of our newly synthesized compounds exhibited more potent HDAC inhibitory activities than the positive control SAHA, and several derivatives were even better than their parent compounds. However, compared with SAHA and our lead compounds, only secondary amine series compounds exhibited improved antiproliferative activities, likely due to their appropriate topological polar surface area values and cell permeabilities. In a human histiocytic lymphoma (U937) xenograft model, the most potent secondary amine 9d exhibited similar in vivo antitumor activity to that of SAHA.
Collapse
Affiliation(s)
- Yingjie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Ji’nan, People’s Republic of China
| | - Xiaoguang Li
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Ji’nan, People’s Republic of China
| | - Jinning Hou
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Ji’nan, People’s Republic of China
| | - Yongxue Huang
- Weifang Bochuang International Biological Medicinal Institute, Weifang, Shandong, People’s Republic of China
| | - Wenfang Xu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Ji’nan, People’s Republic of China
| |
Collapse
|
8
|
Prindull G. Potential Gene Interactions in the Cell Cycles of Gametes, Zygotes, Embryonic Stem Cells and the Development of Cancer. Front Oncol 2015; 5:200. [PMID: 26442212 PMCID: PMC4585297 DOI: 10.3389/fonc.2015.00200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES This review is to explore whether potential gene interactions in the cell cycles of gametes, zygotes, and embryonic stem (ES) cells are associated with the development of cancer. METHODS MEDPILOT at the Central Library of the University of Cologne, Germany (Zentralbibliothek Köln) that covers 5,800 international medical journals and 4,300 E-journals was used to collect data. The initial searches were done in December 2012 and additional searches in October 2013-May 2015. The search terms included "cancer development," "gene interaction," and "ES cells," and the time period was between 1998 and 2015. A total of 147 articles in English language only were included in this review. RESULTS Transgenerational gene translation is implemented in the zygote through interactions of epigenetic isoforms of transcription factors (TFs) from parental gametes, predominantly during the first two zygote cleavages. Pluripotent transcription factors may provide interacting links with mutated genes during zygote-to-ES cell switches. Translation of post-transcriptional carcinogenic genes is implemented by abnormally spliced, tumor-specific isoforms of gene-encoded mRNA/non-coding RNA variants of TFs employing de novo gene synthesis and neofunctionalization. Post-translationally, mutated genes are preserved in pre-neoplastic ES cell subpopulations that can give rise to overt cancer stem cells. Thus, TFs operate as cell/disease-specific epigenetic messengers triggering clinical expression of neoplasms. CONCLUSION Potential gene interactions in the cell cycle of gametes, zygotes, and ES cells may play some roles in the development of cancer.
Collapse
Affiliation(s)
- Gregor Prindull
- Medical Faculty, University of Göttingen , Göttingen , Germany
| |
Collapse
|
9
|
Juo YY, Gong XJ, Mishra A, Cui X, Baylin SB, Azad NS, Ahuja N. Epigenetic therapy for solid tumors: from bench science to clinical trials. Epigenomics 2015; 7:215-35. [PMID: 25942532 DOI: 10.2217/epi.14.73] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cancer epigenome is characterized by global DNA methylation and chromatin changes, such as the hypermethylation of specific CpG island promoters. Epigenetic agents like DNA methyltransferase or histone deacetylase inhibitors induce phenotype changes by reactivation of epigenetically silenced tumor suppressor genes. Despite initial promise in hematologic malignancies, epigenetic agents have not shown significant efficacy as monotherapy against solid tumors. Recent trials showed that epigenetic agents exert favorable modifier effects when combined with chemotherapy, hormonal therapy, or other epigenetic agents. Due to the novel nature of their mechanism, it is important to reconsider the optimal patient selection, drug regimen, study design, and outcome measures when pursuing future trials in order to discover the full potential of this new therapeutic modality.
Collapse
Affiliation(s)
- Yen-Yi Juo
- Department of Surgery, George Washington University Medical Center, 2150 Pennsylvania Ave. NW, Suite 6B, Washington, DC 20037, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Yu X, Li Z. Epigenetic deregulations in chordoma. Cell Prolif 2015; 48:497-502. [PMID: 26256106 DOI: 10.1111/cpr.12204] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/22/2015] [Indexed: 12/13/2022] Open
Abstract
Chordoma is a rare type of malignant bone tumour arising from remnant notochord and prognosis of patients with it remains poor as its molecular and genetic mechanisms are not well understood. Increasing evidence has demonstrated that epigenetic mechanisms (DNA methylation, histone modification and nucleosome remodelling), play a crucial role in the pathogenesis of many diseases. Aberrant epigenetic patterns are present in patients with chordoma, indicating a potential role for epigenetic mechanisms inthis malignancy. Furthermore, epigenetic alterations may provide novel biomarkers for diagnosis and prognosis as well as therapeutic targets for treatment. In this review, we discuss relevant epigenetic findings associated with chordoma, and their potential application for diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| |
Collapse
|
11
|
Design, synthesis and biological evaluation of colchicine derivatives as novel tubulin and histone deacetylase dual inhibitors. Eur J Med Chem 2015; 95:127-35. [PMID: 25805446 DOI: 10.1016/j.ejmech.2015.03.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/14/2015] [Accepted: 03/17/2015] [Indexed: 01/29/2023]
Abstract
A new class of colchicine derivatives were designed and synthesized as tubulin-HDAC dual inhibitors. Biological evaluations of these hybrids included the inhibitory activity of HDAC, tubulin polymerization analysis, in vitro cell cycle analysis in HCT-116 cells and cytotoxicity against different cancer cell lines. Hybrid 6d behaved as potent HDAC-tubulin dual inhibitor and showed comparable cytotoxicity with colchicine. Compound 11a exhibited powerful tubulin inhibitory activity, moderate anti-HDAC activity and the most potent cytotoxicity (IC50 = 2-105 nM).
Collapse
|
12
|
Thaler F, Mercurio C. Towards selective inhibition of histone deacetylase isoforms: what has been achieved, where we are and what will be next. ChemMedChem 2014; 9:523-6. [PMID: 24730063 DOI: 10.1002/cmdc.201300413] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Histone deacetylases (HDACs) are widely studied targets for the treatment of cancer and other diseases. Up to now, over twenty HDAC inhibitors have entered clinical studies and two of them have already reached the market, namely the hydroxamic acid derivative SAHA (vorinostat, Zolinza) and the cyclic depsipeptide FK228 (romidepsin, Istodax) that have been approved for the treatment of cutaneous T-cell lymphoma (CTCL). A common aspect of the first HDAC inhibitors is the absence of any particular selectivity towards specific isozymes. Some of molecules resulted to be “pan”-HDAC inhibitors, while others are class I selective. In the meantime, the knowledge of HDAC biology has continuously progressed. Key advances in the structural biology of various isozymes, reliable molecular homology models as well as suitable biological assays have provided new tools for drug discovery activities. This Minireview aims at surveying these recent developments as well as the design, synthesis and biological characterization of isoform-selective derivatives.
Collapse
|
13
|
|
14
|
Eom GH, Kook H. Posttranslational modifications of histone deacetylases: Implications for cardiovascular diseases. Pharmacol Ther 2014; 143:168-80. [DOI: 10.1016/j.pharmthera.2014.02.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/25/2014] [Indexed: 02/08/2023]
|
15
|
Zhang X, Zhang J, Su M, Zhou Y, Chen Y, Li J, Lu W. Design, synthesis and biological evaluation of 4′-demethyl-4-deoxypodophyllotoxin derivatives as novel tubulin and histone deacetylase dual inhibitors. RSC Adv 2014. [DOI: 10.1039/c4ra05508j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, we have designed and synthesized a class of 4′-demethyl-4-deoxypodophyllotoxin derivatives as tubulin–HDAC dual inhibitors.
Collapse
Affiliation(s)
- Xuan Zhang
- Institute of Drug Discovery and Development
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062, PR China
| | - Jie Zhang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203, PR. China
| | - Mingbo Su
- National Center for Drug Screening
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203, PR China
| | - Yubo Zhou
- National Center for Drug Screening
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203, PR China
| | - Yi Chen
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203, PR. China
| | - Jia Li
- National Center for Drug Screening
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203, PR China
| | - Wei Lu
- Institute of Drug Discovery and Development
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062, PR China
| |
Collapse
|
16
|
The discovery and optimization of novel dual inhibitors of topoisomerase ii and histone deacetylase. Bioorg Med Chem 2013; 21:6981-95. [DOI: 10.1016/j.bmc.2013.09.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/07/2013] [Accepted: 09/07/2013] [Indexed: 11/22/2022]
|
17
|
Zhang X, Zhang J, Tong L, Luo Y, Su M, Zang Y, Li J, Lu W, Chen Y. The discovery of colchicine-SAHA hybrids as a new class of antitumor agents. Bioorg Med Chem 2013; 21:3240-4. [PMID: 23602523 DOI: 10.1016/j.bmc.2013.03.049] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/08/2013] [Accepted: 03/10/2013] [Indexed: 01/18/2023]
Abstract
A novel class of colchicine-SAHA hybrids were designed and synthesised based on the synergistic antitumor effect of tubulin inhibitors and histone deacetylases (HDAC) inhibitors. To the best of our knowledge, this is the first design of molecules that are dual inhibitors of tubulin and HDAC. Biological evaluations of these compounds included the inhibitory activity of HDAC, in vitro cell cycle analysis in BEL-7402 cells as well as cytotoxicity in five cancer cell lines.
Collapse
Affiliation(s)
- Xuan Zhang
- Institute of Drug Discovery and Development, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|