1
|
Zhang Y, Zhu Y, Wang J, Xu Y, Wang Z, Liu Y, Di X, Feng L, Zhang Y. A comprehensive model based on temporal dynamics of peripheral T cell repertoire for predicting post-treatment distant metastasis of nasopharyngeal carcinoma. Cancer Immunol Immunother 2021; 71:675-688. [PMID: 34342668 DOI: 10.1007/s00262-021-03016-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Many nasopharyngeal carcinoma (NPC) patients develop distant metastases after treatment, leading to poor outcomes. To date, there are no peripheral biomarkers suitable for all NPC patients to predict distant metastasis. Hence, we purposed to develop a noninvasive comprehensive model for predicting post-treatment distant metastasis of all NPC. Since T-cell receptor β chain (TCRB) repertoire has achieved prognostic prediction in many cancers, the clinical characteristics and parameters of TCRB repertoire of 71 cases of peripheral blood samples (pairwise pre-treatment and post-treatment samples from 40 NPC patients who without (nM, n = 21) or with (M, n = 19) post-treatment distant metastasis) were collected. The least absolute shrinkage and selection operator algorithm was used to construct a distant metastasis prediction model. In terms of TCRB repertoire parameters, the diversity of TCRB repertoire was significantly decreased in M group after treatment but not in nM group. Ascending TCRB diversity and higher similarity between pre- and post-treatment samples showed better distant metastasis-free survival (DMFS). The similarity still had robust DMFS prediction in patients with reduced TCRB diversity. More importantly, the 5-factor comprehensive model consisting of basic clinical characteristics and TCRB repertoire indices showed a higher prognostic accuracy than any one individual factor in DMFS predicting. In conclusion, treatment had different effects on the composition of TCRB repertoire in patients without and with post-treatment distant metastasis. The dynamics of TCRB diversity, the similarity of TCRB repertoires, and combinations of these factors with basic clinical characteristics could serve as noninvasive DMFS predictors for all NPC patients.
Collapse
Affiliation(s)
- Yajing Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujie Zhu
- Department of Blood Transfusion, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiaqi Wang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Zekun Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Yang Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Xuebing Di
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Ye Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China.
| |
Collapse
|
2
|
Cao Y, Li W, Wang Z, Pang H. Potential and unsolved problems of anti-PD-1/PD-L1 therapy combined with radiotherapy. TUMORI JOURNAL 2020; 107:282-291. [PMID: 32734832 DOI: 10.1177/0300891620940382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor immunotherapy has become one of the main treatments for tumors. Inhibition of the pathways involving programmed cell death receptor 1 (PD-1) and its ligand (PD-L1) has gained favor in anticancer therapy, and can effectively prolong the survival of patients with cancer; however, numerous patients have PD-1/PD-L1 inhibitor primary resistance. The efficacy of anti-PD-1/PD-L1 therapy is related to the host tumor microenvironment. Radiation therapy can promote the body's antitumor immunity, change the tumor microenvironment, and synergize with anti-PD-1/PD-L1 treatment. Preclinical and clinical trials have shown that PD-1/PD-L1 inhibitor combined with radiotherapy has a significant effect. We review the synergistic antitumor mechanism and clinical trials of radiotherapy combined with anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Yiyi Cao
- Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenbo Li
- Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - ZhengJie Wang
- Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Pang
- Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Ozpiskin OM, Zhang L, Li JJ. Immune targets in the tumor microenvironment treated by radiotherapy. Am J Cancer Res 2019; 9:1215-1231. [PMID: 30867826 PMCID: PMC6401500 DOI: 10.7150/thno.32648] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy (RT), the major anti-cancer modality for more than half of cancer patients after diagnosis, has the advantage of local tumor control with relatively less systematic side effects comparing to chemotherapy. However, the efficacy of RT is limited by acquired tumor resistance leading to the risks of relapse and metastasis. To further enhance the efficacy of RT, with the renaissances of targeted immunotherapy (TIT), increasing interests are raised on RT combined with TIT including cancer vaccines, T-cell therapy, and antibody-based immune checkpoint blockers (ICB) such as anti-CTLA-4 and anti-PD1/PD-L1. In achieving a significant synergy between RT and TIT, the dynamics of radiation-induced response in tumor cells and stromal cells, especially the cross-talk between tumor cells and immune cells in the irradiated tumor microenvironment (ITME) as highlighted in recent literature are to be elucidated. The abscopal effect refereeing the RT-induced priming function outside of ITME could be compromised by the immune-suppressive factors such as CD47 and PD-L1 on tumor cells and Treg induced or enhanced in the ITME. Cell surface receptors temporally or permanently induced and bioactive elements released from dead cells could serve antigenic source (radiation-associated antigenic proteins, RAAPs) to the host and have functions in immune regulation on the tumor. This review is attempted to summarize a cluster of factors that are inducible by radiation and targetable by antibodies, or have potential to be immune regulators to synergize tumor control with RT. Further characterization of immune regulators in ITME will deepen our understanding of the interplay among immune regulators in ITME and discover new effective targets for the combined modality with RT and TIT.
Collapse
|