1
|
Komal K, Ghosh R, Sil D, Sharma R, Kumar S, Pandey P, Kumar M. Advancements in nose-to-brain drug targeting for Alzheimer's disease: a review of nanocarriers and clinical insights. Inflammopharmacology 2025; 33:605-626. [PMID: 39776027 DOI: 10.1007/s10787-024-01636-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Alzheimer's disease (AD) is a type of neurodegenerative disease that describes cognitive decline and memory loss resulting in disability in movement, memory, speech etc. Which first affects the hippocampal and entorhinal cortex regions of brain. Pathogenesis of AD depends on Amyloid-β, hyper-phosphorylation of tau protein, mitochondrial dysfunction, cholinergic hypothesis and oxidative stress. In comparison with males, females are more prone to AD due to reduced estrogen level. Some of the FDA-approved drugs and their conventional formulations available in the market are discussed in this review. Nose-to-brain delivery system provides the target specific drug delivery via olfactory and trigeminal nerve (active and passive drug targeting strategies) and bypassing the Blood Brain Barrier. Mucoadhesive agents and permeation enhancers are mostly utilized to enhance the retention time and bioavailability of the drugs. Liposomes, niosomes, cubosomes, solid lipid nanoparticles, nanoemulsions, micelles, and many more nanocarriers for nose-to-brain delivery of drugs are also described thoroughly in this review. It also covers the clinical trials and patents for nose-to-brain delivery. In this article, we investigate the nose-to-brain pathways for AD treatment strategies.
Collapse
Affiliation(s)
- Kumari Komal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Rashmi Ghosh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Debayan Sil
- Department of Pharmaceutical Quality Assurance, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Rohit Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Sourabh Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Prachi Pandey
- Department of Pharmaceutical Quality Assurance, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Manish Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
2
|
Mardikasari SA, Katona G, Csóka I. Serum Albumin in Nasal Drug Delivery Systems: Exploring the Role and Application. Pharmaceutics 2024; 16:1322. [PMID: 39458651 PMCID: PMC11510880 DOI: 10.3390/pharmaceutics16101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The application of serum albumin in various types of formulations has emerged as a valuable option in biomedical research, especially in the field of nasal drug delivery systems. A serum albumin-based carrier system has been employed due to several benefits, such as enhancing drug solubility and stability, generating the desired controlled release profile, and developing favorable properties with respect to the challenges in nasal conditions, which, in this case, involves hindering rapid elimination due to nasal mucociliary clearance. Accordingly, considering the important role of serum albumin, in-depth knowledge related to its utilization in preparing nasal drug formulation is highly encouraged. This review aimed to explore the potential application of serum albumin in fabricating nasal drug formulations and its crucial role and functionality regarding the binding interaction with nasal mucin, which significantly determines the successful administration of nasal drug formulations.
Collapse
Affiliation(s)
- Sandra Aulia Mardikasari
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary; (S.A.M.); (I.C.)
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary; (S.A.M.); (I.C.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary; (S.A.M.); (I.C.)
| |
Collapse
|
3
|
Cimino C, Bonaccorso A, Tomasello B, Alberghina GA, Musumeci T, Puglia C, Pignatello R, Marrazzo A, Carbone C. W/O/W Microemulsions for Nasal Delivery of Hydrophilic Compounds: A Preliminary Study. J Pharm Sci 2024; 113:1636-1644. [PMID: 38281664 DOI: 10.1016/j.xphs.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
The administration of hydrophilic therapeutics has always been a great challenge because of their low bioavailability after administration. For this purpose, W/O/W microemulsion resulted to be a potential successful strategy for the delivery of hydrophilic compounds, interesting for the nasal mucosal therapy. Herein, an optimized biphasic W/O microemulsion was designed, through a preliminary screening, and it was inverted in a triphasic W/O/W microemulsion, intended for the nasal administration. In order to enhance the mucosal retention, surface modification of the biphasic W/O microemulsion was performed adding didodecyldimethylammonium bromide, and then converting the system into a cationic triphasic W/O/W microemulsion. The developed samples were characterized in terms of droplet size, polydispersity, zeta potential, pH and osmolality. The physical long-term stability was analyzed storing samples at accelerated conditions (40 ± 2 °C and 75 ± 5 % RH) for 6 months in a constant climate chamber, following ICH guidelines Q1A (R2). In order to verify the potential retention on the nasal mucosa, the two triphasic systems were analyzed in terms of mucoadhesive properties, measuring the in vitro interaction with mucin over time. Furthermore, fluorescein sodium salt was selected as a model hydrophilic drug to be encapsulated into the inner core of the two triphasic W/O/W microemulsions, and its release was analyzed compared to the free probe solution. The cytocompatibility of the two platforms was assessed on two cell lines, human fibroblasts HFF1 and Calu-3 cell lines, chosen as pre-clinical models for nasal and bronchial/tracheal airway epithelium.
Collapse
Affiliation(s)
- Cinzia Cimino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Barbara Tomasello
- Section of Biochemistry, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Giovanni Anfuso Alberghina
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Carmelo Puglia
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Agostino Marrazzo
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; Medicinal Chemistry Laboratory, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy.
| |
Collapse
|
4
|
Taléns-Visconti R, de Julián-Ortiz JV, Vila-Busó O, Diez-Sales O, Nácher A. Intranasal Drug Administration in Alzheimer-Type Dementia: Towards Clinical Applications. Pharmaceutics 2023; 15:pharmaceutics15051399. [PMID: 37242641 DOI: 10.3390/pharmaceutics15051399] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer-type dementia (ATD) treatments face limitations in crossing the blood-brain barrier and systemic adverse effects. Intranasal administration offers a direct route to the brain via the nasal cavity's olfactory and trigeminal pathways. However, nasal physiology can hinder drug absorption and limit bioavailability. Therefore, the physicochemical characteristics of formulations must be optimized by means of technological strategies. Among the strategies that have been explored, lipid-based nanosystems, particularly nanostructured lipid carriers, are promising in preclinical investigations with minimal toxicity and therapeutic efficacy due to their ability to overcome challenges associated with other nanocarriers. We review the studies of nanostructured lipid carriers for intranasal administration in the treatment of ATD. Currently, no drugs for intranasal administration in ATD have marketing approval, with only three candidates, insulin, rivastigmine and APH-1105, being clinically investigated. Further studies with different candidates will eventually confirm the potential of the intranasal route of administration in the treatment of ATD.
Collapse
Affiliation(s)
- Raquel Taléns-Visconti
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain
| | - Jesus Vicente de Julián-Ortiz
- Molecular Topology and Drug Design Research Unit, Department of Physical Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain
| | - Ofelia Vila-Busó
- Colloids Research Unit, Department of Physical Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain
| | - Octavio Diez-Sales
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Amparo Nácher
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| |
Collapse
|
5
|
Mardikasari SA, Sipos B, Csóka I, Katona G. Nasal route for antibiotics delivery: Advances, challenges and future opportunities applying the quality by design concepts. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Ahmad MZ, Sabri AHB, Anjani QK, Domínguez-Robles J, Abdul Latip N, Hamid KA. Design and Development of Levodopa Loaded Polymeric Nanoparticles for Intranasal Delivery. Pharmaceuticals (Basel) 2022; 15:370. [PMID: 35337167 PMCID: PMC8951268 DOI: 10.3390/ph15030370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Intranasal delivery is an alternative administration route to deliver levodopa (L-Dopa) to the brain. This drug delivery route offers high drug permeability across the nasal epithelium and rapid absorption into the central nervous system (CNS) while bypassing first-pass metabolism. In this study, we developed a library of polymeric nanocarrier systems for L-Dopa utilising poly(lactic-co-glycolic acid) (PLGA) and chitosan. A total of three PLGA nanoparticles formulations (P1, P2 and P3) were prepared using a modified water-in-oil-in-water (W/O/W) solvent evaporation technique, while four formulations of chitosan nanoparticles (C1, C2, C3 and C4) were prepared by ionic gelation method with sodium tripolyphosphate (TPP) as a cross-linking agent. Upon characterising nanocarriers developed, it was discovered that C2 demonstrated the best results with regard to droplet size (553 ± 52 nm), polydispersity index (0.522), zeta potential (+46.2 ± 2.3 mV), and encapsulation efficiency (82.38% ± 1.63). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) further corroborated the particle size analysis highlighting that C2 displayed uniform particle size with spherical morphology. Additionally, X-ray diffraction analysis (XRD) revealed that C2 was in an amorphous state while Fourier transform infrared (FTIR) analysis showed that there were no chemical interactions that might change the chemical structure of L-Dopa within the polymeric nanoparticle matrix. Lastly, an in-vivo intranasal study in male Wistar rats showed that the absorption of L-Dopa when formulated as chitosan nanoparticles was significantly enhanced (p < 0.05) by approximately two-fold compared to unmodified L-Dopa. Therefore, this work illustrates that formulating L-Dopa into chitosan nanoparticles for intranasal delivery is a potentially viable formulation strategy to improve the bioavailability of the drug for the treatment of Parkinson’s disease.
Collapse
Affiliation(s)
- Mohd Zulhelmy Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Malaysia;
| | - Akmal Hidyat Bin Sabri
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; (A.H.B.S.); (Q.K.A.); (J.D.-R.)
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; (A.H.B.S.); (Q.K.A.); (J.D.-R.)
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; (A.H.B.S.); (Q.K.A.); (J.D.-R.)
| | - Normala Abdul Latip
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRINS), Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Malaysia;
| | - Khuriah Abdul Hamid
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Malaysia;
| |
Collapse
|
7
|
Zuglianello C, Lemos-Senna E. The nanotechnological approach for nasal delivery of peptide drugs: a comprehensive review. J Microencapsul 2022; 39:156-175. [PMID: 35262455 DOI: 10.1080/02652048.2022.2051626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This review gathers recent studies, patents, and clinical trials involving the nasal administration of peptide drugs to supply a panorama of developing nanomedicine advances in this field. Peptide drugs have been featured in the pharmaceutical market, due to their high efficacy, biological activity, and low immunogenicity. Pharmaceutical industries need technology to circumvent issues relating to peptide stability and bioavailability. The oral route offers very harsh and unfavourable conditions for peptide administration, while the parenteral route is inconvenient and risky for patients. Nasal administration is an attractive alternative, mainly when associated with nanotechnological approaches. Nanomedicines may improve the nasal administration of peptide drugs by providing protection for the macromolecules from enzymes while also increasing their time of retention and permeability in the nasal mucosa. Nanomedicines for nasal administration containing peptide drugs have been acclaimed for both prevention, and treatment, of infections, including the pandemic COVID-19, cancers, metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Carine Zuglianello
- Pharmaceutical Nanotechnology Post-Graduation Program, University of Santa Catarina, Florianópolis, Brazil
| | - Elenara Lemos-Senna
- Pharmaceutical Nanotechnology Post-Graduation Program, University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
8
|
Lavanya MN, Preethi R, Moses JA, Anandharamakrishnan C. Aerosol-based Pulmonary Delivery of Therapeutic Molecules from Food Sources: Delivery Mechanism, Research Trends, and the Way Forward. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1888971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- M. N. Lavanya
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| | - R. Preethi
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| | - J. A. Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| | - C. Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| |
Collapse
|
9
|
Charalambous M, Volk HA, Van Ham L, Bhatti SFM. First-line management of canine status epilepticus at home and in hospital-opportunities and limitations of the various administration routes of benzodiazepines. BMC Vet Res 2021; 17:103. [PMID: 33663513 PMCID: PMC7934266 DOI: 10.1186/s12917-021-02805-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/16/2021] [Indexed: 12/22/2022] Open
Affiliation(s)
- Marios Charalambous
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Luc Van Ham
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Sofie F M Bhatti
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| |
Collapse
|
10
|
Nasal Mucoadhesive Microspheres of Lercanidipine with Improved Systemic Bioavailability and Antihypertensive Activity. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09441-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Liu J, Liu C, Zhang J, Zhang Y, Liu K, Song JX, Sreenivasmurthy SG, Wang Z, Shi Y, Chu C, Zhang Y, Wu C, Deng X, Liu X, Song J, Zhuang R, Huang S, Zhang P, Li M, Wen L, Zhang YW, Liu G. A Self-Assembled α-Synuclein Nanoscavenger for Parkinson's Disease. ACS NANO 2020; 14:1533-1549. [PMID: 32027482 DOI: 10.1021/acsnano.9b06453] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although emerging evidence suggests that the pathogenesis of Parkinson's disease (PD) is closely related to the aggregation of alpha-synuclein (α-syn) in the midbrain, the clearance of α-syn remains an unmet clinical need. Here, we develop a simple and efficient strategy for fabricating the α-syn nanoscavenger for PD via a reprecipitation self-assembly procedure. The curcumin analogue-based nanoscavenger (NanoCA) is engineered to be capable of a controlled-release property to stimulate nuclear translocation of the major autophagy regulator, transcription factor EB (TFEB), triggering both autophagy and calcium-dependent exosome secretion for the clearance of α-syn. Pretreatment of NanoCA protects cell lines and primary neurons from MPP+-induced neurotoxicity. More importantly, a rapid arousal intranasal delivery system (RA-IDDS) was designed and applied for the brain-targeted delivery of NanoCA, which affords robust neuroprotection against behavioral deficits and promotes clearance of monomer, oligomer, and aggregates of α-syn in the midbrain of an MPTP mouse model of PD. Our findings provide a clinically translatable therapeutic strategy aimed at neuroprotection and disease modification in PD.
Collapse
Affiliation(s)
- Jingyi Liu
- School of Medicine , Xiamen University , Xiamen 361102 , China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine , Hong Kong Baptist University , Hong Kong SAR , China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences , Beijing Institute of Technology , Beijing 100081 , China
| | - Yunming Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Keyin Liu
- School of Medicine , Xiamen University , Xiamen 361102 , China
| | - Ju-Xian Song
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine , Hong Kong Baptist University , Hong Kong SAR , China
| | | | - Ziying Wang
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine , Hong Kong Baptist University , Hong Kong SAR , China
| | - Yesi Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Caisheng Wu
- Laboratory Animal Center , Xiamen University , Xiamen 361102 , China
- School of Pharmaceutical Sciences , Xiamen University , Xiamen 361102 , China
| | - Xianhua Deng
- School of Medicine , Xiamen University , Xiamen 361102 , China
| | - Xingyang Liu
- School of Medicine , Xiamen University , Xiamen 361102 , China
| | - Jing Song
- Laboratory Animal Center , Xiamen University , Xiamen 361102 , China
- School of Pharmaceutical Sciences , Xiamen University , Xiamen 361102 , China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Shuqiong Huang
- School of Medicine , Xiamen University , Xiamen 361102 , China
| | - Pengfei Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Min Li
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine , Hong Kong Baptist University , Hong Kong SAR , China
| | - Lei Wen
- School of Medicine , Xiamen University , Xiamen 361102 , China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience , Xiamen University , Xiamen 361102 , China
| | - Yun Wu Zhang
- School of Medicine , Xiamen University , Xiamen 361102 , China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience , Xiamen University , Xiamen 361102 , China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience , Xiamen University , Xiamen 361102 , China
| |
Collapse
|