1
|
Tiwari R, Kolli M, Chauhan S, Yallapu MM. Tabletized Nanomedicine: From the Current Scenario to Developing Future Medicine. ACS NANO 2024; 18:11503-11524. [PMID: 38629397 DOI: 10.1021/acsnano.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The limitations of conventional therapeutic treatments prevailed in the development of nanotechnology-based medical formulations, termed nanomedicine. Nanomedicine is an advanced medicine that often consists of therapeutic agent(s) embedded in biodegradable or biocompatible nanomaterial-based formulations. Among nanomedicine approaches, tablet (oral) nanomedicine is still under development. In tabletized nanomedicine, the dynamic interplay between nanoformulations and the intricate milieu of the gastrointestinal tract simulates a pivotal role, particularly accentuating the influence exerted upon the luminal, mucosal, and epithelial cells. In this work, we document the perspectives and opportunities of nanoformulations toward the development of tabletized nanomedicine. This review also unveils the notion of integrating nanomedicine within a tablet formulation, which facilitates the controlled release of drugs, biomolecules, and agent(s) from the formulation to achieve a better therapeutic response. Finally, an attempt was made to explore current trends in nanomedicine technology such as bacteriophage, probiotic, and oligonucleotide tabletized nanomedicine and the combination of nanomedicine with imaging agents, i.e., nanotheranostics.
Collapse
Affiliation(s)
- Rahul Tiwari
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Meghana Kolli
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Sumeet Chauhan
- Department of Biology, College of Science, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| |
Collapse
|
2
|
Jin C, Wu F, Hong Y, Shen L, Lin X, Zhao L, Feng Y. Updates on applications of low-viscosity grade Hydroxypropyl methylcellulose in coprocessing for improvement of physical properties of pharmaceutical powders. Carbohydr Polym 2023; 311:120731. [PMID: 37028868 DOI: 10.1016/j.carbpol.2023.120731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Hydroxypropyl methylcellulose (HPMC) is an important polymeric excipient. Its versatility in terms of molecular weights and viscosity grades is the basis for its wide and successful application in the pharmaceutical industry. Low viscosity grades of HPMC (like E3 and E5) have been used as physical modifiers for pharmaceutical powders in recent years due to their unique physicochemical and biological properties (e.g., low surface tension, high Tg, strong hydrogen bonding ability, etc.). Such modification is the co-processing of HPMC with a drug/excipient to create composite particles (CPs) for the purpose of providing synergistic effects of functional improvement as well as of masking undesirable properties of the powder (e.g., flowability, compressibility, compactibility, solubility, stability, etc.). Therefore, given its irreplaceability and tremendous opportunities for future developments, this review summarized and updated studies on improving the functional properties of drugs and/or excipients by forming CPs with low-viscosity HPMC, analyzed and exploited the improvement mechanisms (e.g., improved surface properties, increased polarity, hydrogen bonding, etc.) for the further development of novel co-processed pharmaceutical powders containing HPMC. It also provides an outlook on the future applications of HPMC, aiming to provide a reference on the crucial role of HPMC in various areas for interested readers.
Collapse
|
3
|
Dominik M, Vraníková B, Svačinová P, Elbl J, Pavloková S, Prudilová BB, Šklubalová Z, Franc A. Comparison of Flow and Compression Properties of Four Lactose-Based Co-Processed Excipients: Cellactose ® 80, CombiLac ®, MicroceLac ® 100, and StarLac ®. Pharmaceutics 2021; 13:1486. [PMID: 34575562 PMCID: PMC8467879 DOI: 10.3390/pharmaceutics13091486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022] Open
Abstract
The utilization of co-processed excipients (CPEs) represents a novel approach to the preparation of orally disintegrating tablets by direct compression. Flow, consolidation, and compression properties of four lactose-based CPEs-Cellactose® 80, CombiLac®, MicroceLac® 100, and StarLac®-were investigated using different methods, including granulometry, powder rheometry, and tablet compaction under three pressures. Due to the similar composition and the same preparation technique (spray drying), the properties of CPEs and their compacts were generally comparable. The most pronounced differences were observed in flowability, undissolved fraction after 3 min and 24 h, energy of plastic deformation (E2), ejection force, consolidation behavior, and compact friability. Cellactose® 80 exhibited the most pronounced consolidation behavior, the lowest values of ejection force, and high friability of compacts. CombiLac® showed excellent flow properties but insufficient friability, except for compacts prepared at the highest compression pressure (182 MPa). MicroceLac® 100 displayed the poorest flow properties, lower ejection forces, and the best mechanical resistance of compacts. StarLac® showed excellent flow properties, the lowest amounts of undissolved fraction, the highest ejection force values, and the worst compact mechanical resistance. The obtained results revealed that higher compression pressures need to be used or further excipients have to be added to all tested materials in order to improve the friability and tensile strength of formed tablets, except for MicroceLac® 100.
Collapse
Affiliation(s)
- Martin Dominik
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Palackého tr. 1946/1, 612 42 Brno, Czech Republic; (M.D.); (J.E.); (S.P.)
| | - Barbora Vraníková
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (B.V.); (P.S.); (Z.Š.)
| | - Petra Svačinová
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (B.V.); (P.S.); (Z.Š.)
| | - Jan Elbl
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Palackého tr. 1946/1, 612 42 Brno, Czech Republic; (M.D.); (J.E.); (S.P.)
| | - Sylvie Pavloková
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Palackého tr. 1946/1, 612 42 Brno, Czech Republic; (M.D.); (J.E.); (S.P.)
| | - Barbora Blahová Prudilová
- Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, Křížkovského 511/8, CZ-771 47 Olomouc, Czech Republic;
| | - Zdeňka Šklubalová
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (B.V.); (P.S.); (Z.Š.)
| | - Aleš Franc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Palackého tr. 1946/1, 612 42 Brno, Czech Republic; (M.D.); (J.E.); (S.P.)
| |
Collapse
|
4
|
Amiri MS, Mohammadzadeh V, Yazdi MET, Barani M, Rahdar A, Kyzas GZ. Plant-Based Gums and Mucilages Applications in Pharmacology and Nanomedicine: A Review. Molecules 2021; 26:1770. [PMID: 33809917 PMCID: PMC8004199 DOI: 10.3390/molecules26061770] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Gums are carbohydrate biomolecules that have the potential to bind water and form gels. Gums are regularly linked with proteins and minerals in their construction. Gums have several forms, such as mucilage gums, seed gums, exudate gums, etc. Plant gums are one of the most important gums because of their bioavailability. Plant-derived gums have been used by humans since ancient times for numerous applications. The main features that make them appropriate for use in different applications are high stabilization, viscosity, adhesive property, emulsification action, and surface-active activity. In many pharmaceutical formulations, plant-based gums and mucilages are the key ingredients due to their bioavailability, widespread accessibility, non-toxicity, and reasonable prices. These compete with many polymeric materials for use as different pharmaceuticals in today's time and have created a significant achievement from being an excipient to innovative drug carriers. In particular, scientists and pharmacy industries around the world have been drawn to uncover the secret potential of plant-based gums and mucilages through a deeper understanding of their physicochemical characteristics and the development of safety profile information. This innovative unique class of drug products, useful in advanced drug delivery applications, gene therapy, and biosynthesis, has been developed by modification of plant-based gums and mucilages. In this review, both fundamental and novel medicinal aspects of plant-based gums and mucilages, along with their capacity for pharmacology and nanomedicine, were demonstrated.
Collapse
Affiliation(s)
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 917794-8954, Iran;
| | | | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|