1
|
Zhao Z, Qin Z, Zhao T, Li Y, Hou Z, Hu H, Su X, Gao Y. Crosslinked Biodegradable Hybrid Hydrogels Based on Poly(ethylene glycol) and Gelatin for Drug Controlled Release. Molecules 2024; 29:4952. [PMID: 39459320 PMCID: PMC11510199 DOI: 10.3390/molecules29204952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
A series of hybrid hydrogels of poly(ethylene glycol) (PEG) were synthesized using gelatin as a crosslinker and investigated for controlled delivery of the first-generation cephalosporin antibiotic, Cefazedone sodium (CFD). A commercially available 4-arm-PEG-OH was first modified to obtain four-arm-PEG-succinimidyl glutarate (4-arm-PEG-SG), which formed the gelatin-PEG composite hydrogels (SnNm) through crosslinking with gelatin. To regulate the drug delivery, SnNm hydrogels with various solid contents and crosslinking degrees were prepared. The effect of solid contents and crosslinking degrees on the thermal, mechanical, swelling, degradation, and drug release properties of the hydrogels were intensively investigated. The results revealed that increasing the crosslinking degree and solid content of SnNm could not only enhance the thermal stability, swelling ratio (SR), and compression resistance capacity of SnNm but also prolong the degradation and drug release times. The release kinetics of the SnNm hydrogels were found to follow the first-order model, suggesting that the transport rate of CFD within the matrix of hydrogels is proportional to the concentration of the drug where it is located. Specifically, S1N1-III showed 90% mass loss after 60 h of degradation and a sustained release duration of 72 h. The cytotoxicity assay using the MTT method revealed that cell viability rates of S1N1 were higher than 95%, indicating excellent cytocompatibility. This study offers new insights and methodologies for the development of hydrogels as biomedical composite materials.
Collapse
Affiliation(s)
- Zhenzhen Zhao
- School of Advanced Agricultural Science, Weifang University, Weifang 261061, China;
| | - Zihao Qin
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China;
| | - Tianqing Zhao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228, China; (T.Z.); (H.H.); (X.S.); (Y.G.)
| | - Yuanyuan Li
- School of Advanced Agricultural Science, Weifang University, Weifang 261061, China;
| | - Zhaosheng Hou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China;
| | - Hui Hu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228, China; (T.Z.); (H.H.); (X.S.); (Y.G.)
| | - Xiaofang Su
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228, China; (T.Z.); (H.H.); (X.S.); (Y.G.)
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228, China; (T.Z.); (H.H.); (X.S.); (Y.G.)
| |
Collapse
|
2
|
Modi D, Hussain MS, Ainampudi S, Prajapati BG. Long acting injectables for the treatment of prostate cancer. J Drug Deliv Sci Technol 2024; 100:105996. [DOI: 10.1016/j.jddst.2024.105996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
|
3
|
Wathoni N, Suhandi C, Ghassani Purnama MF, Mutmainnah A, Nurbaniyah NS, Syafra DW, Elamin KM. Alginate and Chitosan-Based Hydrogel Enhance Antibacterial Agent Activity on Topical Application. Infect Drug Resist 2024; 17:791-805. [PMID: 38444772 PMCID: PMC10913799 DOI: 10.2147/idr.s456403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Untreated topical infections can become chronic, posing serious health issues. Optimal skin adherence is crucial in addressing such infections. In this context, chitosan and alginate emerge as promising candidates for use as a foundation in the development of topical hydrogels. The aim of this review is to examine the literature on topical hydrogel formulations that use chitosan and alginate as foundations, specifically in the context of topical antibacterial agents. The research methodology involves a literature review by examining articles published in databases such as PubMed, Scopus, ScienceDirect, and Google Scholar. The keywords employed during the research were "Alginate", "Chitosan", "Hydrogel", and "Antibacterial". Chitosan and alginate serve as bases in topical hydrogels to deliver various active ingredients, particularly antibacterial agents, as indicated by the search results. Both have demonstrated significant antibacterial effectiveness, as evidenced by a reduction in bacterial colony counts and an increase in inhibition zones. This strongly supports the idea that chitosan and alginate could be used together to make topical hydrogels that kill bacteria that work well. In conclusion, chitosan and alginate-based hydrogels show great potential in treating bacterial infections on the skin surface. The incorporation of chitosan and alginate into hydrogel formulations aids in retaining antibacterial agents, allowing for their gradual release over an optimal period. Therefore, hydrogels specifically formulated with chitosan and alginate have the potential to serve as a solution to address challenges in the treatment of topical bacterial infections.
Collapse
Affiliation(s)
- Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Muhammad Fadhil Ghassani Purnama
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Annisa Mutmainnah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Neng Sani Nurbaniyah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Desra Widdy Syafra
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Khaled M Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| |
Collapse
|
4
|
Chen IC, Su CY, Chen PY, Hoang TC, Tsou YS, Fang HW. Investigation and Characterization of Factors Affecting Rheological Properties of Poloxamer-Based Thermo-Sensitive Hydrogel. Polymers (Basel) 2022; 14:polym14245353. [PMID: 36559720 PMCID: PMC9781578 DOI: 10.3390/polym14245353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Poloxamers are negatively temperature-sensitive hydrogels and their hydrophilic groups interact with water molecules at lower temperatures (liquid phase) while their hydrophobic groups interact more strongly with increases in temperature causing gelation. To investigate the factors affecting the rheological properties of poloxamers, various parameters including different poloxamer P407 concentrations, poloxamers P407/P188 blending ratios and additives were examined. The results presented a clear trend of decreasing gelling temperature/time when P407 was at higher concentrations. Moreover, the addition of P188 enhanced the gelling temperature regardless of poloxamer concentration. Polysaccharides and their derivatives have been widely used as components of hydrogel and we found that alginic acid (AA) or carboxymethyl cellulose (CMC) reduced the gelling temperature of poloxamers. In addition, AA-containing poloxamer promoted cell proliferation and both AA -and CMC-containing poloxamer hydrogels reduced cell migration. This study investigated the intriguing characteristics of poloxamer-based hydrogel, providing useful information to compounding an ideal and desired thermo-sensitive hydrogel for further potential clinical applications such as development of sprayable anti-adhesive barrier, wound-healing dressings or injectable drug-delivery system for cartilage repair.
Collapse
Affiliation(s)
- I-Cheng Chen
- Accelerator for Happiness and Health Industry, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
| | - Chen-Ying Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
| | - Pei-Yu Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
| | - The Chien Hoang
- Biotegy Vietnam Company Limited, No. 23, Alley 48, Tho Lao Street, Dong Mac Ward, Hai Ba Trung District, Hanoi City 11609, Vietnam
| | - Yi-Syue Tsou
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110301, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110301, Taiwan
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110301, Taiwan
| | - Hsu-Wei Fang
- Accelerator for Happiness and Health Industry, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan
- Correspondence: ; Tel.: +886-2-2771-2171 (ext. 2521)
| |
Collapse
|
5
|
Rzhechitskiy Y, Gurkov A, Bolbat N, Shchapova E, Nazarova A, Timofeyev M, Borvinskaya E. Adipose Fin as a Natural “Optical Window” for Implantation of Fluorescent Sensors into Salmonid Fish. Animals (Basel) 2022; 12:ani12213042. [PMID: 36359166 PMCID: PMC9654777 DOI: 10.3390/ani12213042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Simple Summary Novel optical sensors require implantation into the most transparent organs in order to ensure the most reliable and rapid monitoring of animal health. Widely farmed salmonid fish, such as rainbow trout, have highly translucent adipose fin, which we tested here and showed its high potential as the implantation site for the fluorescent sensors. The filamentous sensors were convenient to inject into the fin, and their optical signal was easily detectable using a simple hand-held device even without immobilization of the fish. Responsiveness of the sensors inside the adipose fin to bodily changes was shown under induced acidosis of fish fluids. The obtained results characterize adipose fin as the favorable site for implantation of optical sensors into salmonids for real-time tracking animal physiological status in basic research and aquaculture. Abstract Implantable optical sensors are emerging tools that have the potential to enable constant real-time monitoring of various internal physiological parameters. Such a possibility will open new horizons for health control not only in medicine, but also in animal husbandry, including aquaculture. In this study, we analyze different organs of commonly farmed rainbow trout (Oncorhynchus mykiss) as implantation sites for fluorescent sensors and propose the adipose fin, lacking an endoskeleton, as the optimal choice. The fin is highly translucent due to significantly thinner dermis, which makes the detectable fluorescence of an implanted sensor operating at the visible light range by more than an order of magnitude higher relative to the skin. Compared to the proximal parts of ray fins, the adipose fin provides easy implantation and visualization of the sensor. Finally, we tested fluorescent pH sensors inside the adipose fin and demonstrated the possibility of acquiring their signal with a simple hand-held device and without fish anesthesia. All these features will most likely make the adipose fin the main “window” into the internal physiological processes of salmonid fish with the help of implantable optical sensors.
Collapse
Affiliation(s)
| | - Anton Gurkov
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
- Baikal Research Centre, 664003 Irkutsk, Russia
| | - Nadezhda Bolbat
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
| | - Ekaterina Shchapova
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
- Baikal Research Centre, 664003 Irkutsk, Russia
| | - Anna Nazarova
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
| | - Maxim Timofeyev
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
| | - Ekaterina Borvinskaya
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
- Correspondence:
| |
Collapse
|
6
|
Sharma D, Atassi F, Cook S, Marden S, Wang J, Xue A, Wagner DJ, Zhang G, Yang W. Experimental design, development and evaluation of extended release subcutaneous thermo-responsive in situ gels for small molecules in drug discovery. Pharm Dev Technol 2021; 26:1079-1089. [PMID: 34558389 DOI: 10.1080/10837450.2021.1985519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The objective of this work is to develop extended release subcutaneous thermo-responsive in situ gel-forming delivery systems using the following commercially available triblock polymers: poly (lactic-co-glycolic acid)-poly (ethylene glycol)-poly (lactic-co-glycolic acid) (PLGA-PEG-PLGA, copolymer A & B) and poly (lactide-co-caprolactone)-poly (ethylene glycol)-poly (lactide-co-caprolactone) (PLCL-PEG-PLCL, copolymer C). Performance of two optimized formulations containing ketoprofen as a model compound, was assessed by comparing in vitro drug release profiles with in vivo performance following subcutaneous administration in rats. This work employs a Design of Experiment (DoE) approach to explore first, the relationship between copolymer composition, concentration, and gelation temperature (GT), and second, to identify the optimal copolymer composition and drug loading in the thermo-responsive formulation. Furthermore, this work discusses the disconnect observed between in vitro drug release and in vivo pharmacokinetic (PK) profiles. In vitro, both formulations showed extended-release profiles for 5-9 days, while PK parameters and plasma profiles were similar in vivo without extended release observed. In conclusion, a clear disconnection is observed between in vitro ketoprofen drug release and in vivo performance from the two thermogel formulations tested. This finding highlights a remaining challenge for thermogel formulation development, that is, being able to accurately predict in vivo behavior from in vitro results.
Collapse
Affiliation(s)
- Divya Sharma
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, MA, USA
| | - Faraj Atassi
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, MA, USA
| | - Steve Cook
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, MA, USA
| | - Stacey Marden
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, MA, USA
| | - Jianyan Wang
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, MA, USA
| | - Aixiang Xue
- Animal Sciences and Technologies, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Boston, MA, USA
| | | | | | - Wenzhan Yang
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, MA, USA
| |
Collapse
|
7
|
Ziegler CE, Graf M, Nagaoka M, Lehr H, Goepferich AM. In Situ Forming iEDDA Hydrogels with Tunable Gelation Time Release High-Molecular Weight Proteins in a Controlled Manner over an Extended Time. Biomacromolecules 2021; 22:3223-3236. [PMID: 34270216 DOI: 10.1021/acs.biomac.1c00299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Off-target interactions between reactive hydrogel moieties and drug cargo as well as slow reaction kinetics and the absence of controlled protein release over an extended period of time are major drawbacks of chemically cross-linked hydrogels for biomedical applications. In this study, the inverse electron demand Diels-Alder (iEDDA) reaction between norbornene- and tetrazine-functionalized eight-armed poly(ethylene glycol) (PEG) macromonomers was used to overcome these obstacles. Oscillatory shear experiments revealed that the gel point of a 15% (w/v) eight-armed PEG hydrogel with a molecular weight of 10 kDa was less than 15 s, suggesting the potential for fast in situ gelation. However, the high-speed reaction kinetics result in a risk of premature gel formation that complicates the injection process. Therefore, we investigated the effect of polymer concentration, temperature, and chemical structure on the gelation time. The cross-linking reaction was further characterized regarding bioorthogonality. Only 11% of the model protein lysozyme was found to be PEGylated by the iEDDA reaction, whereas 51% interacted with the classical Diels-Alder reaction. After determination of the mesh size, fluorescein isothiocyanate-dextran was used to examine the release behavior of the hydrogels. When glucose oxidase was embedded into 15% (w/v) hydrogels, a controlled release over more than 250 days was achieved. Overall, the PEG-based hydrogels cross-linked via the fast iEDDA reaction represent a promising material for the long-term administration of biologics.
Collapse
Affiliation(s)
- Christian E Ziegler
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Moritz Graf
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Makoto Nagaoka
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Heike Lehr
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Achim M Goepferich
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
8
|
Yao Y, Zhang A, Yuan C, Chen X, Liu Y. Recent trends on burn wound care: hydrogel dressings and scaffolds. Biomater Sci 2021; 9:4523-4540. [PMID: 34047308 DOI: 10.1039/d1bm00411e] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acute and chronic wounds can cause severe physical trauma to patients and also result in an immense socio-economic burden. Thus, wound management has attracted increasing attention in recent years. However, burn wound management is still a major challenge in wound management. Autografts are often considered the gold-standard for burn care, but their application is limited by many factors. Hence, ideal burn dressings and skin substitute dressings are desirable. With the development of biomaterials and progress of tissue engineering technology, some innovative dressings and tissue engineering scaffolds, such as nanofibers, films, foams and hydrogels, have been widely used in the field of biomedicine, especially in wound management. Among them, hydrogels have attracted tremendous attention with their unique advantages. In this review, we discuss the challenges in burn wound management, several crucial design considerations with respect to hydrogels for burn wound healing, and available polymers for hydrogels in burn wound care. In addition, the potential application and plausible prospect of hydrogels are also highlighted.
Collapse
Affiliation(s)
- Yingxia Yao
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Andi Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Congshan Yuan
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China. and Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, P.R. China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| |
Collapse
|
9
|
Ziegler CE, Graf M, Beck S, Goepferich AM. A novel anhydrous preparation of PEG hydrogels enables high drug loading with biologics for controlled release applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Agarwal P, Greene DG, Sherman S, Wendl K, Vega L, Park H, Shimanovich R, Reid DL. Structural characterization and developability assessment of sustained release hydrogels for rapid implementation during preclinical studies. Eur J Pharm Sci 2021; 158:105689. [PMID: 33359482 DOI: 10.1016/j.ejps.2020.105689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/12/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
Sustained-release formulations are important tools to convert efficacious molecules into therapeutic products. Hydrogels enable the rapid assessment of sustained-release strategies, which are important during preclinical development where drug quantities are limited and fast turnaround times are the norm. Most research in hydrogel-based drug delivery has focused around synthesizing new materials and polymers, with limited focus on structural characterization, technology developability and implementation. Two commercially available thermosensitive hydrogel systems, comprised of block copolymers of poly(lactic-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) (PLGA) and poly(lactide-co-caprolactone)-b-poly(ethyleneglycol)-b-poly(lactide-co-caprolactone) (PLCL), were evaluated during this study. The two block copolymers described in the study were successfully formulated to form hydrogels which delayed the release of lysozyme (> 20 days) in vitro. Characterization of formulation attributes of the hydrogels like Tsol-gel temperature, complex viscosity and injection force showed that these systems are amenable to rapid implementation in preclinical studies. Understanding the structure of the gel network is critical to determine the factors controlling the release of therapeutics out of these gels. The structures were characterized via the gel mesh sizes, which were estimated using two orthogonal techniques: small angle X-ray scattering (SAXS) and rheology. The mesh sizes of these hydrogels were larger than the hydrodynamic radius (size) of lysozyme (drug), indicating that release through these gels is expected to be diffusive at all time scales rather than sub-diffusive. In vitro drug release experiments confirm that diffusion is the dominating mechanism for lysozyme release; with no contribution from degradation, erosion, relaxation, swelling of the polymer network or drug-polymer interactions. PLGA hydrogel was found to have a much higher complex viscosity than PLCL hydrogel, which correlates with the slower diffusivity and release of lysozyme seen from the PLGA hydrogel as compared to PLCL hydrogel. This is due to the increased frictional drag experienced by the lysozyme molecule in the PLGA hydrogel network, as described by the hydrodynamic theory.
Collapse
Affiliation(s)
- Prashant Agarwal
- Drug Product Technologies, Process Development, Amgen, Inc., 360 Binney St, Cambridge, MA 02142, United States.
| | - Daniel G Greene
- Drug Product Technologies, Process Development, Amgen, Inc., 360 Binney St, Cambridge, MA 02142, United States
| | - Scott Sherman
- Drug Product Technologies, Process Development, Amgen, Inc., 360 Binney St, Cambridge, MA 02142, United States
| | - Kaitlyn Wendl
- Drug Product Technologies, Process Development, Amgen, Inc., 360 Binney St, Cambridge, MA 02142, United States
| | - Leonela Vega
- Final Product Technologies, Process Development, Amgen Inc., 360 Binney St, Cambridge, MA 02142, United States
| | - Hyunsoo Park
- Drug Product Technologies, Process Development, Amgen, Inc., 360 Binney St, Cambridge, MA 02142, United States
| | - Roman Shimanovich
- Drug Product Technologies, Process Development, Amgen, Inc., 360 Binney St, Cambridge, MA 02142, United States
| | - Darren L Reid
- Drug Product Technologies, Process Development, Amgen, Inc., 360 Binney St, Cambridge, MA 02142, United States
| |
Collapse
|
11
|
Yang W, Bhattachar SN, Patel PJ, Landis M, Patel D, Reid DL, Duvnjak Romic M. Modulating target engagement of small molecules via drug delivery: approaches and applications in drug discovery and development. Drug Discov Today 2020; 26:713-723. [PMID: 33333320 DOI: 10.1016/j.drudis.2020.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/19/2020] [Accepted: 12/08/2020] [Indexed: 12/23/2022]
Abstract
Drug-delivery technologies for modified drug release have been in existence for decades, but their utilization has been largely limited to post-launch efforts improving therapeutic outcomes. Recently, they have gained renewed importance because the pharmaceutical industry is steadily shifting to a more integrated discovery-development approach. In discovery, modulating target engagement via drug-delivery technologies can enable crucial pharmacological studies for building well-defined criteria for molecular design. In development, earlier implementation of delivery technologies can enhance the value of drug products through reduced dosing frequency and improved tolerability and/or safety profile, thereby leading to better adherence and therapeutic effectiveness.
Collapse
Affiliation(s)
- Wenzhan Yang
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, MA 02451, USA.
| | - Shobha N Bhattachar
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Phenil J Patel
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Margaret Landis
- Molecular Pharmaceutics, Pharmaceutical Sciences, Pfizer Global Research and Development, Cambridge, MA 02139, USA
| | - Dipal Patel
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Inc., Princeton, NJ 08543, USA
| | - Darren L Reid
- Pre-Pivotal Drug Product and Cellular Sciences, Drug Product Technologies, Amgen, Inc., Cambridge, MA 02142, USA
| | | |
Collapse
|
12
|
Concentration Effects in the Interaction of Monoclonal Antibodies (mAbs) with their Immediate Environment Characterized by EPR Spectroscopy. Molecules 2019; 24:molecules24142528. [PMID: 31295948 PMCID: PMC6680867 DOI: 10.3390/molecules24142528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 11/17/2022] Open
Abstract
Monoclonal antibodies (mAbs) are often needed and applied in high concentration solutions, >100 mg/mL. Due to close intermolecular distances between mAbs at high concentrations (~10–20 nm at 200 mg/mL), intermolecular interactions between mAbs and mAbs and solvent/co-solute molecules become non-negligible. Here, EPR spectroscopy is used to study the high-concentration solutions of mAbs and their effect on co-solvated small molecules, using EPR “spin probing” assay in aqueous and buffered solutions. Such, information regarding the surrounding environments of mAbs at high concentrations were obtained and comparisons between EPR-obtained micro-viscosities (rotational correlation times) and macroscopic viscosities measured by rheology were possible. In comparison with highly viscous systems like glycerol-water mixtures, it was found that up to concentrations of 50 mg/mL, the mAb-spin probe systems have similar trends in their macro- (rheology) and micro-viscosities (EPR), whereas at very high concentrations they deviate strongly. The charged spin probes sense an almost unchanged aqueous solution even at very high concentrations, which in turn indicates the existence of large solvent regions that despite their proximity to large mAbs essentially offer pure water reservoirs for co-solvated charged molecules. In contrast, in buffered solutions, amphiphilic spin probes like TEMPO interact with the mAb network, due to slight charge screening. The application of EPR spectroscopy in the present work has enabled us to observe and discriminate between electrostatic and hydrophobic kinds of interactions and depict the potential underlying mechanisms of network formation at high concentrations of mAbs. These findings could be of importance as well for the development of liquid-liquid phase separations often observed in highly concentrated protein solutions.
Collapse
|
13
|
Sifniotis V, Cruz E, Eroglu B, Kayser V. Current Advancements in Addressing Key Challenges of Therapeutic Antibody Design, Manufacture, and Formulation. Antibodies (Basel) 2019; 8:E36. [PMID: 31544842 PMCID: PMC6640721 DOI: 10.3390/antib8020036] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Therapeutic antibody technology heavily dominates the biologics market and continues to present as a significant industrial interest in developing novel and improved antibody treatment strategies. Many noteworthy advancements in the last decades have propelled the success of antibody development; however, there are still opportunities for improvement. In considering such interest to develop antibody therapies, this review summarizes the array of challenges and considerations faced in the design, manufacture, and formulation of therapeutic antibodies, such as stability, bioavailability and immunological engagement. We discuss the advancement of technologies that address these challenges, highlighting key antibody engineered formats that have been adapted. Furthermore, we examine the implication of novel formulation technologies such as nanocarrier delivery systems for the potential to formulate for pulmonary delivery. Finally, we comprehensively discuss developments in computational approaches for the strategic design of antibodies with modulated functions.
Collapse
Affiliation(s)
- Vicki Sifniotis
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Esteban Cruz
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Barbaros Eroglu
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Veysel Kayser
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| |
Collapse
|