1
|
Feng Y, Chen X, He RR, Liu Z, Lvov YM, Liu M. The Horizons of Medical Mineralogy: Structure-Bioactivity Relationship and Biomedical Applications of Halloysite Nanoclay. ACS NANO 2024. [PMID: 39016265 DOI: 10.1021/acsnano.4c04372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Medical mineralogy explores the interactions between natural minerals and living organisms such as cells, tissues, and organs and develops therapeutic and diagnostic applications in drug delivery, medical devices, and healthcare materials. Many minerals (especially clays) have been recognized for pharmacological activities and therapeutic potential. Halloysite clay (Chinese medicine name: Chishizhi), manifested as one-dimensional aluminum silicate nanotubes (halloysite nanotubes, HNTs), has gained applications in hemostasis, wound repair, gastrointestinal diseases, tissue engineering, detection and sensing, cosmetics, and daily chemicals formulations. Various biomedical applications of HNTs are derived from hollow tubular structures, high mechanical strength, good biocompatibility, bioactivity, and unique surface characteristics. This natural nanomaterial is safe, abundantly available, and may be processed with environmentally safe green chemistry methods. This review describes the structure and physicochemical properties of HNTs relative to bioactivity. We discuss surface area, porosity and surface defects, hydrophilicity, heterogeneity and charge of external and internal surfaces, as well as biosafety. The paper provides comprehensive guidance for the development of this tubule nanoclay and its advanced biomedical applications for clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Yue Feng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiangyu Chen
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuri M Lvov
- Institute for Micromanufacturing and Biomedical Engineering Program, Louisiana Tech University, Ruston, Louisiana 71272, United States
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| |
Collapse
|
2
|
Kaur A, Midha S, Giri S, Mohanty S. Functional Skin Grafts: Where Biomaterials Meet Stem Cells. Stem Cells Int 2019; 2019:1286054. [PMID: 31354835 PMCID: PMC6636521 DOI: 10.1155/2019/1286054] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Skin tissue engineering has attained several clinical milestones making remarkable progress over the past decades. Skin is inhabited by a plethora of cells spatiotemporally arranged in a 3-dimensional (3D) matrix, creating a complex microenvironment of cell-matrix interactions. This complexity makes it difficult to mimic the native skin structure using conventional tissue engineering approaches. With the advent of newer fabrication strategies, the field is evolving rapidly. However, there is still a long way before an artificial skin substitute can fully mimic the functions and anatomical hierarchy of native human skin. The current focus of skin tissue engineers is primarily to develop a 3D construct that maintains the functionality of cultured cells in a guided manner over a period of time. While several natural and synthetic biopolymers have been translated, only partial clinical success is attained so far. Key challenges include the hierarchical complexity of skin anatomy; compositional mismatch in terms of material properties (stiffness, roughness, wettability) and degradation rate; biological complications like varied cell numbers, cell types, matrix gradients in each layer, varied immune responses, and varied methods of fabrication. In addition, with newer biomaterials being adopted for fabricating patient-specific skin substitutes, issues related to escalating processing costs, scalability, and stability of the constructs under in vivo conditions have raised some concerns. This review provides an overview of the field of skin regenerative medicine, existing clinical therapies, and limitations of the current techniques. We have further elaborated on the upcoming tissue engineering strategies that may serve as promising alternatives for generating functional skin substitutes, the pros and cons associated with each technique, and scope of their translational potential in the treatment of chronic skin ailments.
Collapse
Affiliation(s)
- Amtoj Kaur
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - Swati Midha
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| | - Shibashish Giri
- Department of Cell Techniques and Applied Stem Cell Biology, Centre for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, D-04103 Leipzig, Germany
- Department of Plastic Surgery and Hand Surgery, University Hospital Rechts der Isar, Technische Universität München, Munich, Germany
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Santos AC, Panchal A, Rahman N, Pereira-Silva M, Pereira I, Veiga F, Lvov Y. Evolution of Hair Treatment and Care: Prospects of Nanotube-Based Formulations. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E903. [PMID: 31234351 PMCID: PMC6631835 DOI: 10.3390/nano9060903] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Abstract
A new approach for hair treatment through coating with nanotubes loaded with drugs or dyes for coloring is suggested. This coating is produced by nanotube self-assembly, resulting in stable 2-3 µm thick layers. For medical treatment such formulations allow for sustained long-lasting drug delivery directly on the hair surface, also enhanced in the cuticle openings. For coloring, this process allows avoiding a direct hair contact with dye encased inside the clay nanotubes and provides a possibility to load water insoluble dyes from an organic solvent, store the formulation for a long time in dried form, and then apply to hair as an aqueous nanotube suspension. The described technique works with human and other mammal hairs and halloysite nanoclay coating is resilient against multiple shampoo washing. The most promising, halloysite tubule clay, is a biocompatible natural material which may be loaded with basic red, blue, and yellow dyes for optimized hair color, and also with drugs (e.g., antilice care-permethrin) to enhance the treatment efficiency with sustained release. This functionalized nanotube coating may have applications in human medical and beauty formulations, as well as veterinary applications.
Collapse
Affiliation(s)
- Ana Cláudia Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
- REQUIMTE/LAQV, Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Abhishek Panchal
- Institute for Micromanufacturing, Louisiana Tech University, P.O. Box 10137, Ruston, LA 71272, USA.
| | - Naureen Rahman
- Institute for Micromanufacturing, Louisiana Tech University, P.O. Box 10137, Ruston, LA 71272, USA.
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
- REQUIMTE/LAQV, Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Irina Pereira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
- REQUIMTE/LAQV, Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
- REQUIMTE/LAQV, Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University, P.O. Box 10137, Ruston, LA 71272, USA.
- Theoretical Physics & Applied Mathematics Department, Ural Federal University, 620002 Ekaterinburg, Russia.
| |
Collapse
|
4
|
Dong Y, Liu Z, Qi F, Jin L, Zhang L, Zhu N. Polyethylene-Glycol-Ornamented Small Intestinal Submucosa Biosponge for Skin Tissue Engineering. ACS Biomater Sci Eng 2019; 5:2457-2465. [PMID: 33405753 DOI: 10.1021/acsbiomaterials.8b01592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yabing Dong
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhifei Liu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Fazhi Qi
- Department of Plastic Surgery, Zhongshan Hospital, Shanghai 200032, China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Liang Zhang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ningwen Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|