1
|
Zhu J, Wen T, Ma Y, Zeng Q, Li P, Zhou W. Biomimetic hyaluronic acid-stabilized zinc oxide nanoparticles in acne treatment: A preclinical and clinical approach. J Control Release 2025; 382:113754. [PMID: 40254135 DOI: 10.1016/j.jconrel.2025.113754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/22/2025]
Abstract
Acne vulgaris is a common chronic inflammatory skin condition, often caused by C. acnes infection. While ZnO has shown promise as an antibacterial agent in acne treatment, concerns over toxicity and non-selective bacterial killing remain. In this study we developed a hyaluronic acid-stabilized nano‑zinc oxide (HA-ZnO) formulation aimed at enhancing the therapeutic efficacy and safety of ZnO for acne treatment. HA-ZnO was synthesized through biomimetic mineralization. HA-ZnO targeted acne-prone areas, especially sebaceous glands, without skin penetration. HA-ZnO demonstrated selective antibacterial activity against C. acnes, exhibiting a killing efficacy more than 16 times greater than that against S. epidermidis. The HA coating also improved ZnO's stability in acidic conditions, mitigating potential toxicity and side effects. Additionally, the sustained release of Zn2+ promoted cell proliferation and migration, reducing sebum secretion, and exerting anti-inflammatory effects, supporting scar-free acne repair and preventing recurrence. In preclinical models, HA-ZnO outperformed erythromycin ointment in treating acne, with no toxicity observed in zebrafish and HET-CAM. A clinical trial further confirmed its efficacy in reducing acne lesions and redness, with high safety. These results highlight HA-ZnO as a promising therapeutic strategy for acne, combining potent antibacterial and skin-repairing effects with enhanced safety.
Collapse
Affiliation(s)
- Jiaojiao Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Tiao Wen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yunxiao Ma
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China; Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Qingya Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Pei Li
- Hunan BeautySci Biotech Co., Ltd, Hunan 410122, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China; Hunan BeautySci Biotech Co., Ltd, Hunan 410122, China.
| |
Collapse
|
2
|
Ramadhan SA, Ali DS. Innovations in Core-Shell Nanoparticles: Advancing Drug Delivery Solutions and Precision Medicine. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2025. [PMID: 39981668 DOI: 10.1089/omi.2024.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Drug delivery innovation is an important pillar of systems pharmacology wherein nanotechnology offers significant prospects. This expert review examines and unpacks how core-shell nanoparticles (NPs) could revolutionize drug delivery systems and play a key role in advancing personalized and precision medicine. Core-shell NPs have gained attention as flexible tools for drug delivery due to their distinct structure, which features a core material enclosed by a protective shell. This setup offers multiple benefits, such as effective drug encapsulation, shielding the drug from degradation, and allowing for controlled release. Accordingly, the core serves as a safe storage area for the drug while the shell manages the release speed, providing added stability and supporting sustained delivery. By enabling targeted drug release, this controlled mechanism can help improve treatment outcomes and reduce side effects. Various materials, including polymers, lipids, and inorganic substances create these NPs. Biodegradable polymers, such as poly(lactic-co-glycolic acid) and poly(lactic acid), are popular choices because they offer adjustable degradation rates, which further control how the drug is released. These materials can be tailored for better drug loading, compatibility with the host organism, and specific chemical properties to suit different therapeutic needs. Research into core-shell NPs has been advancing in many therapeutic areas, highlighting their potential for drug delivery innovations. The potential of core-shell NPs to revolutionize drug delivery is not just a possibility but a promising reality that could significantly advance the field of personalized/precision medicine.
Collapse
Affiliation(s)
- Suren A Ramadhan
- Department of Pharmacy, College of Pharmacy, Knowledge University, Erbil, Iraq
| | - Diyar S Ali
- Department of Pharmacy, College of Pharmacy, Knowledge University, Erbil, Iraq
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| |
Collapse
|
3
|
Jin SE, Sung JH. Delivery Strategies of siRNA Therapeutics for Hair Loss Therapy. Int J Mol Sci 2024; 25:7612. [PMID: 39062852 PMCID: PMC11277092 DOI: 10.3390/ijms25147612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Therapeutic needs for hair loss are intended to find small interfering ribonucleic acid (siRNA) therapeutics for breakthrough. Since naked siRNA is restricted to meet a druggable target in clinic,, delivery systems are indispensable to overcome intrinsic and pathophysiological barriers, enhancing targetability and persistency to ensure safety, efficacy, and effectiveness. Diverse carriers repurposed from small molecules to siRNA can be systematically or locally employed in hair loss therapy, followed by the adoption of new compositions associated with structural and environmental modification. The siRNA delivery systems have been extensively studied via conjugation or nanoparticle formulation to improve their fate in vitro and in vivo. In this review, we introduce clinically tunable siRNA delivery systems for hair loss based on design principles, after analyzing clinical trials in hair loss and currently approved siRNA therapeutics. We further discuss a strategic research framework for optimized siRNA delivery in hair loss from the scientific perspective of clinical translation.
Collapse
Affiliation(s)
- Su-Eon Jin
- Epi Biotech Co., Ltd., Incheon 21984, Republic of Korea
| | | |
Collapse
|
4
|
Heydari S, Barzegar-Jalali M, Heydari M, Radmehr A, Paiva-Santos AC, Kouhsoltani M, Hamishehkar H. The impact of particle size of nanostructured lipid carriers on follicular drug delivery: A comprehensive analysis of mouse and human hair follicle penetration. BIOIMPACTS : BI 2024; 14:30243. [PMID: 39493898 PMCID: PMC11530971 DOI: 10.34172/bi.2024.30243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 11/05/2024]
Abstract
Introduction Follicular delivery is one of the targeted drug delivery methods aiming to target the hair follicles. The accumulation and retention time of targeted drugs is enhanced when nanoparticles are used as drug carriers. Particle size is one of the important factors affecting the penetration and accumulation of particles in the hair follicles, and there is a controversy in different studies for the best particle size for follicular delivery. Mouse models are mostly used in clinical trials for dermal, transdermal, and follicular delivery studies. Also, it is essential to investigate the reliability of the results between human studies and mouse models. Methods Curcumin-loaded nanostructured lipid carriers (NLCs), as a fluorescent agent, with three different particle size ranges were prepared using the hot homogenization method and applied topically on the mouse and human study groups. Biopsies were taken from applied areas on different days after using the formulation. The histopathology studies were done on the skin biopsies of both groups using confocal laser scanning microscopy (CLSM). We compared the confocal laser scanning microscope pictures of different groups, in terms of penetration and retention time of nanoparticles in human and mouse hair follicles. Results The best particle size in both models was the 400 nm group but the penetration and accumulation of particles in human and mouse hair follicles were totally different even for the 400 nm group. In human studies, 400 nm particles showed good accumulation after seven days; this result can help to increase the formulation using intervals. Conclusion The best particle size for human and mouse follicular drug delivery is around 400 nm and although mouse models are not completely suitable for follicular delivery studies, they can be used in some conditions as experimental models.
Collapse
Affiliation(s)
- Saman Heydari
- Student Research Committee and Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Biotechnology Research Center and Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Heydari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Radmehr
- Department of Dermatology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maryam Kouhsoltani
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Yan A, Ruan R, Zhu X, Qiang W, Guan Y, Yu Q, Sun H, Liu M, Zhu H. Co-delivery of minoxidil and tocopherol acetate ethosomes to reshape the hair Follicular Microenvironment and promote hair regeneration in androgenetic alopecia. Int J Pharm 2023; 646:123498. [PMID: 37820942 DOI: 10.1016/j.ijpharm.2023.123498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/08/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
The most prevalent kind of hair loss is androgenic alopecia (AGA), which is characterized by hair follicle miniaturization and microenvironment dysfunction. Although topical Minoxidil (MXD) was considered to be a safe and effective treatment for AGA, excess reactive oxygen species (ROS) and lower sulfotransferase activity in the hair follicular microenvironment led to an unsatisfactory treatment of AGA. Here, we developed the ethosome (MTE) load of minoxidil and tocopherol acetate to improve the therapeutic effect of MXD on androgenic alopecia. It could regulate the microenvironment around hair follicles, promote the telogen-to-anagen transition of hair follicles, and boost hair regeneration, thus achieving a synergistic effect of 1 + 1 > 2. The results proved that MTE showed excellent stability, biosafety, and good dermal and follicular permeability in vitro. The hair regeneration ability of AGA model mice showed that the co-delivery ethosome might regulate the microenvironment around the hair follicles and improve hair regeneration in comparison to the commercial minoxidil tincture alone. As a result, the strategy provided a promising new strategy for the treatment of AGA.
Collapse
Affiliation(s)
- Aqin Yan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Rui Ruan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xiaolei Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Wei Qiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yeneng Guan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Qi Yu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Hongmei Sun
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Mingxing Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Hongda Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
6
|
Correia M, Lopes J, Lopes D, Melero A, Makvandi P, Veiga F, Coelho JFJ, Fonseca AC, Paiva-Santos AC. Nanotechnology-based techniques for hair follicle regeneration. Biomaterials 2023; 302:122348. [PMID: 37866013 DOI: 10.1016/j.biomaterials.2023.122348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
The hair follicle (HF) is a multicellular complex structure of the skin that contains a reservoir of multipotent stem cells. Traditional hair repair methods such as drug therapies, hair transplantation, and stem cell therapy have limitations. Advances in nanotechnology offer new approaches for HF regeneration, including controlled drug release and HF-specific targeting. Until recently, embryogenesis was thought to be the only mechanism for forming hair follicles. However, in recent years, the phenomenon of wound-induced hair neogenesis (WIHN) or de novo HF regeneration has gained attention as it can occur under certain conditions in wound beds. This review covers HF-specific targeting strategies, with particular emphasis on currently used nanotechnology-based strategies for both hair loss-related diseases and HF regeneration. HF regeneration is discussed in several modalities: modulation of the hair cycle, stimulation of progenitor cells and signaling pathways, tissue engineering, WIHN, and gene therapy. The HF has been identified as an ideal target for nanotechnology-based strategies for hair regeneration. However, some regulatory challenges may delay the development of HF regeneration nanotechnology based-strategies, which will be lastly discussed.
Collapse
Affiliation(s)
- Mafalda Correia
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Joana Lopes
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Daniela Lopes
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia (Campus de Burjassot), Av. Vicente A. Estelles s/n, 46100, Burjassot, Valencia, Spain
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, Zhejiang, China
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Jorge F J Coelho
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal
| | - Ana C Fonseca
- CEMMPRE - Department of Chemical Engineering, University of Coimbra, 3030-790, Coimbra, Portugal.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| |
Collapse
|
7
|
Sharma A, Mohapatra H, Arora K, Babbar R, Arora R, Arora P, Kumar P, Algın Yapar E, Rani K, Meenu M, Babu MA, Kaur M, Sindhu RK. Bioactive Compound-Loaded Nanocarriers for Hair Growth Promotion: Current Status and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:3739. [PMID: 37960095 PMCID: PMC10649697 DOI: 10.3390/plants12213739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023]
Abstract
Hair loss (alopecia) has a multitude of causes, and the problem is still poorly defined. For curing alopecia, therapies are available in both natural and synthetic forms; however, natural remedies are gaining popularity due to the multiple effects of complex phytoconstituents on the scalp with fewer side effects. Evidence-based hair growth promotion by some plants has been reported for both traditional and advanced treatment approaches. Nanoarchitectonics may have the ability to evolve in the field of hair- and scalp-altering products and treatments, giving new qualities to hair that can be an effective protective layer or a technique to recover lost hair. This review will provide insights into several plant and herbal formulations that have been reported for the prevention of hair loss and stimulation of new hair growth. This review also focuses on the molecular mechanisms of hair growth/loss, several isolated phytoconstituents with hair growth-promoting properties, patents, in vivo evaluation of hair growth-promoting activity, and recent nanoarchitectonic technologies that have been explored for hair growth.
Collapse
Affiliation(s)
- Arvind Sharma
- School of Pharmaceutical and Health Sciences, Bhoranj (Tikker–Kharwarian), Hamirpur 176041, India;
| | - Harapriya Mohapatra
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Kanika Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Poonam Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, 7 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Evren Algın Yapar
- Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas 58140, Türkiye;
| | - Kailash Rani
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (H.M.); (K.A.); (R.B.); (R.A.); (P.A.); (K.R.)
| | - Maninder Meenu
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute, Mohali 143005, India;
| | | | - Maninderjit Kaur
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India;
| | - Rakesh K. Sindhu
- School of Pharmacy, Sharda University, Greater Noida 201306, India
| |
Collapse
|
8
|
Cheng T, Tai Z, Shen M, Li Y, Yu J, Wang J, Zhu Q, Chen Z. Advance and Challenges in the Treatment of Skin Diseases with the Transdermal Drug Delivery System. Pharmaceutics 2023; 15:2165. [PMID: 37631379 PMCID: PMC10458513 DOI: 10.3390/pharmaceutics15082165] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Skin diseases are among the most prevalent non-fatal conditions worldwide. The transdermal drug delivery system (TDDS) has emerged as a promising approach for treating skin diseases, owing to its numerous advantages such as high bioavailability, low systemic toxicity, and improved patient compliance. However, the effectiveness of the TDDS is hindered by several factors, including the barrier properties of the stratum corneum, the nature of the drug and carrier, and delivery conditions. In this paper, we provide an overview of the development of the TDDS from first-generation to fourth-generation systems, highlighting the characteristics of each carrier in terms of mechanism composition, penetration method, mechanism of action, and recent preclinical studies. We further investigated the significant challenges encountered in the development of the TDDS and the crucial significance of clinical trials.
Collapse
Affiliation(s)
- Tingting Cheng
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, China; (T.C.); (J.Y.); (J.W.)
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Min Shen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Ying Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Junxia Yu
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, China; (T.C.); (J.Y.); (J.W.)
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Jiandong Wang
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, China; (T.C.); (J.Y.); (J.W.)
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Zhongjian Chen
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, China; (T.C.); (J.Y.); (J.W.)
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| |
Collapse
|
9
|
Prabahar K, Udhumansha U, Elsherbiny N, Qushawy M. Microneedle mediated transdermal delivery of β-sitosterol loaded nanostructured lipid nanoparticles for androgenic alopecia. Drug Deliv 2022; 29:3022-3034. [PMID: 36110028 PMCID: PMC10003132 DOI: 10.1080/10717544.2022.2120927] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 02/01/2023] Open
Abstract
Plant-derived 5 α-reductase inhibitors, such as β-sitosterol and phytosterol glycosides, have been used to treat androgenic alopecia, but their oral absolute bioavailability is poor. This study aimed to develop a transdermal drug delivery system of β-sitosterol (BS) using a nanostructured lipid carrier (NLC) incorporated into polymeric microneedles (MN). Using a high-speed homogenization method, NLC was formulated variables were optimized by Box-Behnken statistical design. The optimized formulation of BS-loaded NLCs was incorporated into the chitosan-based MNs to prepare NLC-loaded polymeric MNs (NLC-MNs) and evaluated using testosterone induced alopecia rats. The cumulative amount of β-sitosterol associated with NLC- MN which penetrated the rat skin in-vitro was 3612.27 ± 120.81 μg/cm2, while from the NLC preparation was 2402.35 ± 162.5 μg/cm2. The steady state flux (Jss) of NLC-MN was significantly higher than that of the optimized NLC formulation (P < 0.05). Anagen/telogen ratio was significantly affected by NLC and NLC-MN, which was 2.22 ± 0.34, 1.24 ± 0.18 respectively compared to 0.26 ± 0.08 for animal group treated with testosterone. The reversal of androgen-induced hair loss in animals treated with β-sitosterol was a sign of hair follicle dominance in the anagenic growth phase. However, NLC-MN delivery system has shown significant enhancement of hair growth in rats. From these experimental data, it can be concluded that NLC incorporated MN transdermal system have potential in effective treatment of androgenic alopecia.
Collapse
Affiliation(s)
- Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Pharmacy Practice, Faculty of Pharmacy, Dr. M.G.R. Educational and Research Institute, Velappanchavadi, Chennai, Tamil Nadu, India
| | | | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish, North Sinai, Egypt
| |
Collapse
|
10
|
Díez-Pascual AM. Surface Engineering of Nanomaterials with Polymers, Biomolecules, and Small Ligands for Nanomedicine. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3251. [PMID: 35591584 PMCID: PMC9104878 DOI: 10.3390/ma15093251] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022]
Abstract
Nanomedicine is a speedily growing area of medical research that is focused on developing nanomaterials for the prevention, diagnosis, and treatment of diseases. Nanomaterials with unique physicochemical properties have recently attracted a lot of attention since they offer a lot of potential in biomedical research. Novel generations of engineered nanostructures, also known as designed and functionalized nanomaterials, have opened up new possibilities in the applications of biomedical approaches such as biological imaging, biomolecular sensing, medical devices, drug delivery, and therapy. Polymers, natural biomolecules, or synthetic ligands can interact physically or chemically with nanomaterials to functionalize them for targeted uses. This paper reviews current research in nanotechnology, with a focus on nanomaterial functionalization for medical applications. Firstly, a brief overview of the different types of nanomaterials and the strategies for their surface functionalization is offered. Secondly, different types of functionalized nanomaterials are reviewed. Then, their potential cytotoxicity and cost-effectiveness are discussed. Finally, their use in diverse fields is examined in detail, including cancer treatment, tissue engineering, drug/gene delivery, and medical implants.
Collapse
Affiliation(s)
- Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
11
|
Pereira-Silva M, Martins AM, Sousa-Oliveira I, Ribeiro HM, Veiga F, Marto J, Paiva-Santos AC. Nanomaterials in hair care and treatment. Acta Biomater 2022; 142:14-35. [PMID: 35202853 DOI: 10.1016/j.actbio.2022.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022]
Abstract
Hair care and treatment has evolved significantly through the years as new formulations are continuously being explored in an attempt to meet the demand in cosmetic and medicinal fields. While standard hair care procedures include hair washing, aimed at hair cleansing and maintenance, as well as hair dyeing and bleaching formulations for hair embellishment, modern hair treatments are mainly focused on circumventing hair loss conditions, strengthening hair follicle properties and treat hair infestations. In this regard, active compounds (ACs) included in hair cosmetic formulations include a vast array of hair cleansing and hair dye molecules, and typical hair treatments include anti-hair loss ACs (e.g. minoxidil and finasteride) and anti-lice ACs (e.g. permethrin). However, several challenges still persist, as conventional AC formulations exhibit sub-optimal performance and some may present toxicity issues, calling for an improved design of formulations regarding both efficacy and safety. More recently, nano-based strategies encompassing nanomaterials have emerged as promising tailored approaches to improve the performance of ACs incorporated into hair cosmetics and treatment formulations. The interest in using these nanomaterials is based on account of their ability to: (1) increase stability, safety and biocompatibility of ACs; (2) maximize hair affinity, contact and retention, acting as versatile biointerfaces; (3) enable the controlled release of ACs in both hair and scalp, serving as prolonged AC reservoirs; besides offering (4) hair follicle targeting features attending to the possibility of surface tunability. This review covers the breakthrough of nanomaterials for hair cosmetics and hair treatment, focusing on organic nanomaterials (polymer-based and lipid-based nanoparticles) and inorganic nanomaterials (nanosheets, nanotubes and inorganic nanoparticles), as well as their applications, highlighting their potential as innovative multifunctional nanomaterials towards maximized hair care and treatment. STATEMENT OF SIGNIFICANCE: This manuscript is focused on reviewing the nanotechnological strategies investigated for hair care and treatment so far. While conventional formulations exhibit sub-optimal performance and some may present toxicity issues, the selection of improved and suitable nanodelivery systems is of utmost relevance to ensure a proper active ingredient release in both hair and scalp, maximize hair affinity, contact and retention, and provide hair follicle targeting features, warranting stability, efficacy and safety. This innovative manuscript highlights the advantages of nanotechnology-based approaches, particularly as tunable and versatile biointerfaces, and their applications as innovative multifunctional nanomaterials towards maximized hair care and treatment.
Collapse
Affiliation(s)
- Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ana Margarida Martins
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Inês Sousa-Oliveira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Helena Margarida Ribeiro
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Joana Marto
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
12
|
Oliveira PM, Alencar-Silva T, Pires FQ, Cunha-Filho M, Gratieri T, Carvalho JL, Gelfuso GM. Nanostructured lipid carriers loaded with an association of minoxidil and latanoprost for targeted topical therapy of alopecia. Eur J Pharm Biopharm 2022; 172:78-88. [PMID: 35143972 DOI: 10.1016/j.ejpb.2022.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/12/2022] [Accepted: 02/04/2022] [Indexed: 01/13/2023]
Abstract
Alopecia is a condition associated with different etiologies, ranging from hormonal changes to chemotherapy, that affects over 80 million people in the USA. Nevertheless, there are currently few FDA-approved drugs for topical treatment, and existing formulations still present skin irritation issues, compromising treatment adherence. This work aimed to develop a safe formulation based on nanostructured lipid carriers (NLC) that entrap an association of minoxidil and latanoprost and target drug delivery to the hair follicles. To do so, thermal techniques combined with FTIR were used to assess the chemical compatibility of the proposed drug association. Then, NLC with 393.5 ± 36.0 nm (PdI<0.4) and +22.5 ± 0.2 mV zeta potential were produced and shown to entrap 86.9% of minoxidil and 99.9% of latanoprost efficiently. In vitro, the free drug combination was indicated to exert positive effects over human primary epidermal keratinocytes, supporting cell proliferation, migration and inducing the mRNA expression of MKI67 proliferation marker and VEGF - a possible effector for minoxidil-mediated hair growth. Interestingly, such a favorable drug combination profile was optimized when delivered using our NLC. Furthermore, according to the HET-CAM and reconstructed human epidermis assays, the nanoformulation was well tolerated. Finally, drug penetration was evaluated in vitro using porcine skin. Such experiments indicated that the NLC could be deposited preferentially into the hair follicles, causing a considerable increase in the penetration of the two drugs in such structures, compared to the control (composed of the free compounds) and generating a target-effect of approximately 50% for both drugs. In summary, present results suggest that hair follicle-targeted delivery of the minoxidil and latanoprost combination is a promising alternative to treat alopecia.
Collapse
Affiliation(s)
- Paula M Oliveira
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900 Brasilia, DF, Brazil
| | - Thuany Alencar-Silva
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, 70790-160 Brasília, DF, Brazil
| | - Felipe Q Pires
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900 Brasilia, DF, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900 Brasilia, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900 Brasilia, DF, Brazil
| | - Juliana Lott Carvalho
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, 70790-160 Brasília, DF, Brazil; Faculty of Medicine, University of Brasilia, 70910-900 Brasilia, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900 Brasilia, DF, Brazil.
| |
Collapse
|
13
|
Optimization and Transfollicular Delivery of Finasteride-Loaded Proniosomes for Hair Growth Stimulation in C57BL/6Mlac Mice. Pharmaceutics 2021; 13:pharmaceutics13122177. [PMID: 34959458 PMCID: PMC8706991 DOI: 10.3390/pharmaceutics13122177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 01/09/2023] Open
Abstract
The study aimed to develop the finasteride-loaded proniosome (FLP) to enhance the transfollicular delivery of finasteride (FN). The response surface methodology (RSM) combined with central composite design (CCD) with three independent variables (FN concentrations, total lipid content, and cholesterol content) was used to optimize the FLP preparation. The particles size, zeta potential, entrapment efficiency, and drug loading capacity of the FLP were analyzed. The transfollicular delivery of the optimum formulation was investigated in vitro. In vivo hair growth stimulation study was performed on C57BL/6Mlac mice dorsal areas. The Draize primary skin irritation test for erythema and edema was performed in the New Zealand white rabbit skin. The optimum FLP consists of 5.0 mM of FN, 10.1 mM of total lipid content, and 50.0% of the cholesterol in the total lipid. The prepared proniosome delivered the FN significantly (p < 0.05), compared to the naked finasteride solution in a dose- and time-dependent manner. The FLP treatment significantly increases the number and size of hair follicles in a dose-dependent manner. The efficiency of 1% FLP was comparable to the 2% minoxidil solution. The FLP exhibited no skin irritation after 72 h. Therefore, the results demonstrated that the FLP could stimulate hair growth via a transfollicular delivery system.
Collapse
|
14
|
Talei B, Shauly O, Gould D. Platelet Rich Plasma Hybridized Adipose Transplant (PHAT) for the Treatment of Hair Loss: A Case Series. Aesthetic Plast Surg 2021; 45:2760-2767. [PMID: 34236484 PMCID: PMC8264964 DOI: 10.1007/s00266-021-02406-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/29/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Platelet-rich plasma (PRP) has long been used for the restoration of hair in conjunction with microneedling or on its own. Fat grafting to the scalp has also been utilized in the past to improve the quality of hair and the possibility of successful hair transplant. The novel therapy reported in this case series combines the natural progression of these two techniques and utilizes synergistic effects to improve the quality of hair, either in preparation for micrografting or without hair transplant. OBJECTIVES To demonstrate the principles behind the novel approach to restoration of hair and the rationale for its use. METHODS A review of the evidence for PRP and fat transfer for non-scarring alopecia serves as the foundation for the combination treatment reported herein. Through presentation of three cases in this series, we provide examples of the utility of this approach for non-scarring alopecia. This report includes a female who suffered non-scarring alopecia following COVID-19 hospitalization and intensive care stay where she lost a large percentage of her hair, in addition to two male patients suffering from androgenic alopecia. RESULTS Platelet-rich plasma-hybridized adipose transplant hair was shown in these three cases to improve both the quality and density of hair. It improved the density of hair in all patients and was characterized first by a short period of transient hair loss followed by new hair growth which develops starting at 4 weeks and was readily apparent at 12-week follow-up. Results were maintained at 6-month and 1-year follow-up. CONCLUSIONS PHAT hair offers a combination of beneficial effects-namely the unique healing properties and growth signaling provided by PRP, along with adipocyte angiogenic and growth signaling, which both work to improve scalp quality. The combination of these effects is better than previously characterized PRP injections alone in the hands of these individual practices. This may be due to synergistic interactions at a cellular level, but additional clinical studies are needed to better understand this novel treatment and the observed effects. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
| | - Orr Shauly
- USC, 1500 Soto street, Los Angeles, CA, USA
| | - Daniel Gould
- USC, 1500 Soto street, Los Angeles, CA, USA.
- , 120 S Spalding, Beverly Hills, CA, USA.
- , 4560 admiralty way, Marina Del Rey, CA, USA.
| |
Collapse
|
15
|
Hair Growth Promotion Effect of Nelumbinis Semen Extract with High Antioxidant Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6661373. [PMID: 33790980 PMCID: PMC7984906 DOI: 10.1155/2021/6661373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/24/2021] [Accepted: 03/06/2021] [Indexed: 01/11/2023]
Abstract
This study investigated the hair regeneration promotion and hair loss prevention properties of Nelumbinis Semen (NS) extract in vitro and in vivo. The effect of NS on the proliferation and migration of human dermal papilla cells (hDPCs) was measured in vitro via CCK-8 and scratch migration assays, after which the antioxidant activity of NS was also quantified. NS extracts were then applied to the back of 7-week-old C57BL/6 mice for 3 weeks to monitor hair growth patterns and hair follicle (HF) histology. The mice were divided into three groups: negative control group (NC; DMSO), positive control group (PC; 3% minoxidil), and experimental group (NS extract 1,000 ppm). Moreover, to study the molecular mechanisms by which NS extract regenerates hair growth, real-time PCR was used to analyze factors related to the hair growth cycle. The NS extracts were found to possess high antioxidant properties due to their high flavonoid contents and electron-donating ability. Moreover, NS extracts enhanced hDPC proliferation and migration in a concentration-dependent manner (15.63–125 ppm). The hair growth index and growth area of the NS group (2.81 score, 81%) on day 14 were higher than those of the PC group (2.65 score, 68%) (p < 0.05). Additionally, the HFs of the NS group were located deep in the subcutis, similar to the PC group with developed hair roots. Moreover, the mRNA expression of VEGF and IGF-1 was higher in the NS group compared to the PC group, whereas TGF-β1 expression was lower (p < 0.05). Our findings indicate that NS modulates hair growth by increasing IGF-1 and VEGF expression while inhibiting that of TGF-β1. Therefore, our findings suggest that NS extract is a promising new hair loss treatment derived from a natural substance that helps promote hair growth and prevent hair loss.
Collapse
|
16
|
Tolentino S, Pereira MN, Cunha-Filho M, Gratieri T, Gelfuso GM. Targeted clindamycin delivery to pilosebaceous units by chitosan or hyaluronic acid nanoparticles for improved topical treatment of acne vulgaris. Carbohydr Polym 2021; 253:117295. [DOI: 10.1016/j.carbpol.2020.117295] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 12/27/2022]
|
17
|
Pereira MN, Tolentino S, Pires FQ, Anjos JL, Alonso A, Gratieri T, Cunha-Filho M, Gelfuso GM. Nanostructured lipid carriers for hair follicle-targeted delivery of clindamycin and rifampicin to hidradenitis suppurativa treatment. Colloids Surf B Biointerfaces 2021; 197:111448. [DOI: 10.1016/j.colsurfb.2020.111448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/22/2020] [Accepted: 10/31/2020] [Indexed: 01/30/2023]
|
18
|
Salim S, Kamalasanan K. Controlled drug delivery for alopecia: A review. J Control Release 2020; 325:84-99. [DOI: 10.1016/j.jconrel.2020.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/21/2023]
|
19
|
LC–MS bioanalytical method for simultaneous determination of latanoprost and minoxidil in the skin. J Pharm Biomed Anal 2020; 187:113373. [DOI: 10.1016/j.jpba.2020.113373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 01/15/2023]
|
20
|
Fernandes B, Matamá T, Andreia C. Gomes, Cavaco-Paulo A. Cyclosporin A-loaded poly(d,l-lactide) nanoparticles: a promising tool for treating alopecia. Nanomedicine (Lond) 2020; 15:1459-1469. [DOI: 10.2217/nnm-2020-0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Alopecia treatments are scarce and lack efficacy. Cyclosporin A (CsA) has hair growth-inducing properties but its poor cutaneous absorption undermines its use in topical treatments. Aim: Development of a new potential topical treatment of alopecia with CsA. Materials & methods: CsA-loaded poly(d,l-lactide) (PLA) nanoparticles were obtained and characterized. Skin permeation was evaluated in ex vivo porcine skin. Results: Nanoparticles with good physicochemical stability increased CsA skin permeation/hair follicles accumulation, compared with a noncolloidal formulation. CsA biocompatibility in NCTC2455 keratinocytes (reference skin cell line) was clearly improved when encapsulated in PLA nanoparticles. Conclusion: This work fosters further in vivo investigation of CsA-loaded PLA nanoparticles as a promising new strategy to treat alopecia, a very traumatic, possibly autoimmune, disease.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB – Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Teresa Matamá
- CEB – Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Andreia C. Gomes
- CBMA – Centre of Molecular and Environmental Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB – Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
21
|
Kochar P, Nayak K, Thakkar S, Polaka S, Khunt D, Misra M. Exploring the potential of minoxidil tretinoin liposomal based hydrogel for topical delivery in the treatment of androgenic alopecia. Cutan Ocul Toxicol 2020; 39:43-53. [DOI: 10.1080/15569527.2019.1694032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Pratiksha Kochar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Gandhinagar, India
| | - Kritika Nayak
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Gandhinagar, India
| | - Shreya Thakkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Gandhinagar, India
| | - Suryanarayan Polaka
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Gandhinagar, India
| | - Dignesh Khunt
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Gandhinagar, India
| | - Manju Misra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Gandhinagar, India
| |
Collapse
|
22
|
Abstract
Introduction: The improvement of percutaneous absorption represents a clear dermatopharmaceutical aim. Recently, the hair follicle was recognized to be an important penetration pathway. Especially nanoparticles show an enhanced intrafollicular penetration and can be utilized to target specific cell populations within the hair follicle.Areas covered: The present review briefly summarizes the recent advances in follicular drug delivery of nanoparticles. Moreover, the particularities of the hair follicle as a penetration pathway are summarized which include its structure and specific barrier properties. Recently, the mechanism of the follicular penetration process has been clarified.In the meantime, different strategies have been developed to successfully improve follicular drug delivery of nanoparticles. One approach is to equip the nanocarriers with a triggered release system enabling them to release their drug load at the right time and place.Expert opinion: Follicular drug delivery with smart nanocarrier-based drug delivery systems represents a promising approach to increase the percutaneous absorption of topically applied substances. Although technical achievements and efficacy proofs concerning an increased penetration of substances are already available, the practical implementation into clinical application still represents an additional challenge and should be in the focus of interest in future research.
Collapse
Affiliation(s)
- Alexa Patzelt
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Juergen Lademann
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
23
|
Pires FQ, da Silva JKR, Sa-Barreto LL, Gratieri T, Gelfuso GM, Cunha-Filho M. Lipid nanoparticles as carriers of cyclodextrin inclusion complexes: A promising approach for cutaneous delivery of a volatile essential oil. Colloids Surf B Biointerfaces 2019; 182:110382. [DOI: 10.1016/j.colsurfb.2019.110382] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 01/30/2023]
|
24
|
Lee HJ, Kwon HK, Kim HS, Kim MI, Park HJ. Hair Growth Promoting Effect of 4HGF Encapsulated with PGA Nanoparticles (PGA-4HGF) by β-Catenin Activation and Its Related Cell Cycle Molecules. Int J Mol Sci 2019; 20:E3447. [PMID: 31337050 PMCID: PMC6678797 DOI: 10.3390/ijms20143447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Poly-γ-glutamic acid (γ-PGA)-based nanoparticles draw remarkable attention as drug delivery agents due to their controlled release characteristics, low toxicity, and biocompatibility. 4HGF is an herbal mixture of Phellinus linteus grown on germinated brown rice, Cordyceps militaris grown on germinated soybeans, Polygonum multiflorum, Ficus carica, and Cocos nucifera oil. Here, we encapsulated 4HGF within PGA-based hydrogel nanoparticles, prepared by simple ionic gelation with chitosan, to facilitate its penetration into hair follicles (HFs). In this study, we report the hair promoting activity of 4HGF encapsulated with PGA nanoparticles (PGA-4HGF) and their mechanism, compared to 4HGF alone. The average size of spherical nanoparticles was ~400 nm in diameter. Continuous release of PGA-4HGF was observed in a simulated physiological condition. As expected, PGA-4HGF treatment increased hair length, induced earlier anagen initiation, and elongated the duration of the anagen phase in C57BL/6N mice, compared with free 4HGF treatment. PGA-4HGF significantly increased dermal papilla cell proliferation and induced cell cycle progression. PGA-4HGF also significantly increased the total amount of β-catenin protein expression, a stimulator of the anagen phase, through induction of cyclinD1 and CDK4 protein levels, compared to free 4HGF treatment. Our findings underscore the potential of PGA nanocapsules to efficiently deliver 4HGF into HFs, hence promoting hair-growth. Therefore, PGA-4HGF nanoparticles may be promising therapeutic agents for hair growth disorders.
Collapse
Affiliation(s)
- Hye-Ji Lee
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea
| | - Ha-Kyoung Kwon
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea
| | - Hye Su Kim
- Department of BioNano Technology, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea
| | - Moon Il Kim
- Department of BioNano Technology, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea.
| |
Collapse
|