1
|
Li J, Mao K, Meng X, Wang J, Zhao M, Lv Y, Xin Y, Sun H, Zhang Y, Yang YG, Sun T. Injectable hydrogel-assisted local lipopolysaccharide delivery improves immune checkpoint blockade therapy. Acta Biomater 2025; 194:153-168. [PMID: 39827003 DOI: 10.1016/j.actbio.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Tumor-associated macrophages (TAMs) significantly influence the clinical outcomes of immune checkpoint blockade (ICB) therapy. Strategies aimed at reprogramming TAMs from the immunosuppressive M2 phenotype to the pro-inflammatory M1 phenotype hold promise for enhancing ICB efficacy. Lipopolysaccharide (LPS), a potent Toll-like receptor 4 (TLR4) ligand, can reprogram TAMs toward an M1 phenotype. However, the systemic application of LPS is restricted due to its pronounced pro-inflammatory properties, which limit safe dosing in cancer treatment. To address this, thermosensitive hydrogels offer a viable solution by optimizing drug bioavailability and reducing systemic dissemination. In our study, carboxymethyl chitosan (CS) was incorporated into Pluronic F127 to extend the hydrogel's degradation period, facilitating the localized delivery and accumulation of LPS within tumor sites. Peritumoral injection of this hydrogel enhanced the tumor-inhibitory effects of anti-PD-1 antibodies, significantly improving the survival of 4T1 tumor-bearing mice. The GelF127CS-LPS hydrogel also increased the expression of the activation marker on tumor-infiltrating dendritic cells, promoted a higher M1/M2 TAM ratio, and enhanced CD8+ T cell infiltration into tumors-key indicators of T-cell-mediated anti-tumor immunity. Notably, no significant liver or hematological toxicity was observed with GelF127CS-LPS treatment, underscoring its favorable safety profile. These findings demonstrate the potential of GelF127CS-LPS as a TAMs-modulating agent and a promising combinatorial strategy to boost ICB therapy effectiveness. STATEMENT OF SIGNIFICANCE: LPS, a potent TLR4 ligand, can reprogram tumor-associated macrophages (TAMs) toward an M1 phenotype, thereby contributing to tumor inhibition. However, its anti-tumor application is constrained by the contradiction between high-dose toxicity and insufficient efficacy at low doses. To address this issue, we developed a thermosensitive hydrogel encapsulating LPS, GelF127CS-LPS, which allows localized LPS release within the tumor area. This hydrogel reprograms TAMs at a picogram level of LPS to achieve a favorable M1/M2 ratio and promotes the activation of T cell-mediated antitumor immunity without observable toxicity. Consequently, when combined with immune checkpoint blockade (ICB), the hydrogel can inhibit tumor growth and improve overall survival. This study provides an effective method for tumor-targeted therapeutic LPS delivery to enhance the efficacy of ICB.
Collapse
Affiliation(s)
- Jiaxuan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Xiandi Meng
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Mengfei Zhao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Yue Lv
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Yanbao Xin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Huating Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China; International Center of Future Science, Jilin University, Changchun, Jilin, PR China.
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China; International Center of Future Science, Jilin University, Changchun, Jilin, PR China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, PR China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, PR China; International Center of Future Science, Jilin University, Changchun, Jilin, PR China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, PR China.
| |
Collapse
|
2
|
Beydogan AB, Coskun Yazici ZM, Bolkent S. Influences of calorie restriction and lipopolysaccharide therapy on inflammation, cytokine response, and cell proliferation in pancreatic adenocarcinoma mouse model. J Biochem Mol Toxicol 2023; 37:e23250. [PMID: 36281497 DOI: 10.1002/jbt.23250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/05/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
The study aimed to investigate the effects of lipopolysaccharide (LPS) alone and in combination with calorie restriction (CR) on the pancreatic tissues in C57BL/6 mice modeled with pancreatic ductal adenocarcinoma (PDAC). Forty male C57BL/6 mice (10-13 weeks old) were divided into five groups; LPS, LPS + CR, PDAC, PDAC + LPS, and PDAC + LPS + CR. Nuclear factor kappa B (NF-κβ), interleukin-6 (IL-6), and c-Jun N-terminal kinases (JNK) mRNA expression levels were measured in pancreatic tissues. NF-κβ, IL-6, JNK, and proliferating cell nuclear antigen (PCNA) peptide levels were determined by immunohistochemistry. Oxidative stress markers and antioxidant enzyme activities were determined spectrophotometrically. TH1/TH2 cytokine measurements were determined by a flow cytometer. It was detected that the number of PCNA immune + cells in the PDAC + LPS + CR group was significantly lower than in the PDAC and PDAC + LPS groups (p < 0.01, p < 0.05 respectively). PDAC + LPS + CR group's plasma interferon-gamma (IFN-γ), IL-6, IL-2, tumor necrosis factor-alpha, IL-3, and IL-4 levels were found to be significantly lower than the PDAC group (p < 0.01, p < 0.001, p < 0.01, p < 0.05, p < 0.01, and p < 0.05 respectively). According to our findings, the combination of low-dose LPS and 40% CR was found to be more effective in PDAC model mice.
Collapse
Affiliation(s)
- Alisa B Beydogan
- Department of Medical Biology, Faculty of Cerrahpasa Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Zeynep M Coskun Yazici
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul, Turkey
| | - Sema Bolkent
- Department of Medical Biology, Faculty of Cerrahpasa Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
3
|
Tumor draining lymph nodes, immune response, and radiotherapy: Towards a revisal of therapeutic principles. Biochim Biophys Acta Rev Cancer 2022; 1877:188704. [DOI: 10.1016/j.bbcan.2022.188704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/06/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022]
|
4
|
Zhou H, Yang Y, Deng L, Yao Y, Liao X. A Potential Mechanism of Kidney-Tonifying Herbs Treating Unexplained Recurrent Spontaneous Abortion: Clinical Evidence From the Homogeneity of Embryo Implantation and Tumor Invasion. Front Pharmacol 2022; 12:775245. [PMID: 35153745 PMCID: PMC8826263 DOI: 10.3389/fphar.2021.775245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Kidney-tonifying herbs (KTHs) are widely used to treat unexplained recurrent spontaneous abortion (URSA) based on the theory of traditional Chinese medicine (TCM). However, there is still a lack of systematic evaluation and mechanistic explanation for these treatments. Objective: The purpose of this study was to assess the clinical efficacy, and to investigate the potential mechanisms, of KTH based on TCM for the treatment of URSA. Methods: A systematic literature search was conducted within PubMed, Embase, China Biomedical Literature database, Web of Science (WOS), China National Knowledge Infrastructure (CNKI) database, and the Wanfang database to find articles reporting on the Chinese herbal formula based around KTH for treating URSA, which were published between January 2010 and June 2021. A full bibliometric analysis was carried out; in addition, randomized controlled trial (RCT) articles were selected for systematic evaluation and meta-analysis. The drugs with the highest frequency of KTHs were screened for meta-analysis. Finally, network analysis and molecular docking were used to study the key components and potential pathway of KTHs in the treatment of URSA. Results: The meta-analysis included nine RCTs involving 1,054 subjects. Compared with the control groups, the clinical efficacy of TCM-based KTHs in the treatment of URSA patients significantly improved outcomes. Additionally, a component target pathway network was identified, which included 32 potential blood activating components and 113 main targets. Japonine, sopranol, lysine, and matrine were considered the most important bioactive molecules for KTHs. The key potential therapeutic pathway for URSA was a tumor-related signaling pathway. The target genes for URSA regulated by KTHs were highly similar to tumor biological processes such as the regulation of apoptotic signaling pathways, inflammatory responses, angiogenesis, and epithelial metabolic transition. Conclusion: KTH has great potential for treating URSA. Because the maintenance of pregnancy has a high similarity with tumor invasion, the research relating to tumor mechanisms should also be followed up as it may lead to new ideas and breakthroughs for research into URSA. At the same time, embryonic and decidual cells share a high degree of cellular heterogeneity and spatial structural complexity with tumor cells, and a single cell combined with spatial omics may be the best future approach for validating KTH mechanisms.
Collapse
Affiliation(s)
- Hang Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Yang
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linwen Deng
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongqing Yao
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Liao
- Department of Information, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Shende P, Gupta S. Role of lipopolysaccharides in potential applications of nanocarrier systems. Curr Pharm Des 2021; 28:1000-1010. [PMID: 34818999 DOI: 10.2174/1381612827666211124094302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lipopolysaccharides (LPS) are considered the main molecular component in the outer membrane of gram-negative bacteria. The LPS molecule in the bacterial cell wall acts as a primary physical barrier and protects gram-negative bacteria from the surrounding environment. LPS (endotoxins) show immunomodulatory therapeutic properties as well as toxicity to the host cell, whereas potential applications encompass. OBJECTIVE This review article aims to describe the recent developments of lipopolysaccharides in nanocarrier systems for various applications such as vaccination, cancer chemotherapy and immune stimulants action. Different nanocarriers like cubosomes, niosomes, dendrimers and metal nanoparticles used in the delivery of actives are employed to decorate lipopolysaccharide molecules superficially. METHODS A narrative review of all the relevant papers known to the author was conducted. CONCLUSION Commercially available lipid nanoparticles contribute to many advances as promising nanocarriers in cancer therapy and are used as a vaccine adjuvant by improving the immune response due to their properties such as size, shape, biocompatibility, and biodegradability. Whereas lipopolysaccharide-decorated nanoparticles change the host's tolerability and increase the effectiveness of molecule in cancer immunotherapy. These nanoconjugate systems enhance overall immunogenic response and effectiveness in vaccine immunotherapy and targeted therapy, not only limited to humans application but also for poultry and aquaculture. Newer opportunities using lipopolysaccharides for the treatment and management of diseases with unique characteristics like the presence of lipoprotein that act as an alternative for bacterial infections over conventional dosage forms.
Collapse
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai. India
| | - Shubham Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai. India
| |
Collapse
|
6
|
Park J, Choi J, Kim DD, Lee S, Lee B, Lee Y, Kim S, Kwon S, Noh M, Lee MO, Le QV, Oh YK. Bioactive Lipids and Their Derivatives in Biomedical Applications. Biomol Ther (Seoul) 2021; 29:465-482. [PMID: 34462378 PMCID: PMC8411027 DOI: 10.4062/biomolther.2021.107] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022] Open
Abstract
Lipids, which along with carbohydrates and proteins are among the most important nutrients for the living organism, have a variety of biological functions that can be applied widely in biomedicine. A fatty acid, the most fundamental biological lipid, may be classified by length of its aliphatic chain, and the short-, medium-, and long-chain fatty acids and each have distinct biological activities with therapeutic relevance. For example, short-chain fatty acids have immune regulatory activities and could be useful against autoimmune disease; medium-chain fatty acids generate ketogenic metabolites and may be used to control seizure; and some metabolites oxidized from long-chain fatty acids could be used to treat metabolic disorders. Glycerolipids play important roles in pathological environments, such as those of cancers or metabolic disorders, and thus are regarded as a potential therapeutic target. Phospholipids represent the main building unit of the plasma membrane of cells, and play key roles in cellular signaling. Due to their physical properties, glycerophospholipids are frequently used as pharmaceutical ingredients, in addition to being potential novel drug targets for treating disease. Sphingolipids, which comprise another component of the plasma membrane, have their own distinct biological functions and have been investigated in nanotechnological applications such as drug delivery systems. Saccharolipids, which are derived from bacteria, have endotoxin effects that stimulate the immune system. Chemically modified saccharolipids might be useful for cancer immunotherapy or as vaccine adjuvants. This review will address the important biological function of several key lipids and offer critical insights into their potential therapeutic applications.
Collapse
Affiliation(s)
- Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaehyun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seunghee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Bongjin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yunhee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sanghee Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungwon Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Mi-Ock Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Quoc-Viet Le
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Markazi A, Meng W, Bracci PM, McGrath MS, Gao SJ. The Role of Bacteria in KSHV Infection and KSHV-Induced Cancers. Cancers (Basel) 2021; 13:cancers13174269. [PMID: 34503079 PMCID: PMC8428360 DOI: 10.3390/cancers13174269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The aim of this article is to review the complex interactions of bacteria with Kaposi’s sarcoma-associated herpesvirus (KSHV) infection and KSHV-induced cancers. KSHV is causally associated with multiple cancers including Kaposi’s sarcoma (KS) and primary effusion lymphoma. Among patients coinfected by HIV and KSHV, patients with KS have a distinct oral microbiome compared to patients without KS. Moreover, KSHV patients have increased levels of salivary bacterial pathogen-associated molecular patterns compared to KSHV-negative patients. KSHV-associated bacterial species can increase KSHV replication and dissemination, and enhance cell proliferation of KSHV-transformed cells. The analysis of bacterial biomarkers associated with KSHV may help improve our understanding of the mechanisms driving KSHV-induced oncogenesis and identify novel targets for improving therapies of KSHV-related cancers. Abstract The objective of this article is to review the current status of the bacteria-virus interplay in Kaposi’s sarcoma-associated herpesvirus (KSHV) infection and KSHV-driven cancers. KSHV is the etiological agent of several cancers, including Kaposi’s sarcoma (KS) and primary effusion lymphoma. Due to immunosuppression, patients with KSHV are at an increased risk for bacterial infections. Moreover, among patients coinfected by HIV and KSHV, patients with KS have distinct oral microbiota compared to non-KS patients. Bacterial biomarkers associated with KSHV-driven cancers can provide insights in discerning the mechanisms of KSHV-induced oncogenesis. For example, pathogen-associated molecular patterns and bacterial products of certain bacterial species can regulate the expression of KSHV lytic and latent genes, thereby affecting viral replication and dissemination. In addition, infection with distinct opportunistic bacterial species have been associated with increased cell proliferation and tumorigenesis in KSHV-induced cancers through activation of pro-survival and -mitogenic cell signaling pathways. By elucidating the various mechanisms in which bacteria affect KSHV-associated pathogenesis, we will be able to pinpoint therapeutic targets for KSHV infection and KSHV-related cancers.
Collapse
Affiliation(s)
- Ashley Markazi
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA; (A.M.); (W.M.)
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Wen Meng
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA; (A.M.); (W.M.)
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Paige M. Bracci
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA 94158, USA;
| | - Michael S. McGrath
- Department of Laboratory Medicine, Pathology and Medicine, University of California at San Francisco, San Francisco, CA 94143, USA;
| | - Shou-Jiang Gao
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA; (A.M.); (W.M.)
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|
8
|
Hannon G, Prina-Mello A. Endotoxin contamination of engineered nanomaterials: Overcoming the hurdles associated with endotoxin testing. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1738. [PMID: 34254460 DOI: 10.1002/wnan.1738] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/30/2022]
Abstract
Nanomaterials are highly susceptible to endotoxin contamination due their large surface-to-volume ratios and endotoxins propensity to associate readily to hydrophobic and cationic surfaces. Additionally, the stability of endotoxin ensures it cannot be removed efficiently through conventional sterilization techniques such as autoclaving and ionizing radiation. In recent times, the true significance of this hurdle has come to light with multiple reports from the United States Nanotechnology Characterization Laboratory, in particular, along with our own experiences of endotoxin testing from multiple Horizon 2020-funded projects which highlight the importance of this issue for the clinical translation of nanomaterials. Herein, we provide an overview on the topic of endotoxin contamination of nanomaterials intended for biomedical applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Dublin, Ireland.,Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Adriele Prina-Mello
- Nanomedicine and Molecular Imaging Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Dublin, Ireland.,Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Khan A, Dias F, Neekhra S, Singh B, Srivastava R. Designing and Immunomodulating Multiresponsive Nanomaterial for Cancer Theranostics. Front Chem 2021; 8:631351. [PMID: 33585406 PMCID: PMC7878384 DOI: 10.3389/fchem.2020.631351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/22/2020] [Indexed: 01/14/2023] Open
Abstract
Cancer has been widely investigated yet limited in its manifestation. Cancer treatment holds innovative and futuristic strategies considering high disease heterogeneity. Chemotherapy, radiotherapy and surgery are the most explored pillars; however optimal therapeutic window and patient compliance recruit constraints. Recently evolved immunotherapy demonstrates a vital role of the host immune system to prevent metastasis recurrence, still undesirable clinical response and autoimmune adverse effects remain unresolved. Overcoming these challenges, tunable biomaterials could effectively control the co-delivery of anticancer drugs and immunomodulators. Current status demands a potentially new approach for minimally invasive, synergistic, and combinatorial nano-biomaterial assisted targeted immune-based treatment including therapeutics, diagnosis and imaging. This review discusses the latest findings of engineering biomaterial with immunomodulating properties and implementing novel developments in designing versatile nanosystems for cancer theranostics. We explore the functionalization of nanoparticle for delivering antitumor therapeutic and diagnostic agents promoting immune response. Through understanding the efficacy of delivery system, we have enlightened the applicability of nanomaterials as immunomodulatory nanomedicine further advancing to preclinical and clinical trials. Future and present ongoing improvements in engineering biomaterial could result in generating better insight to deal with cancer through easily accessible immunological interventions.
Collapse
Affiliation(s)
- Amreen Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Faith Dias
- Department of Chemical Engineering, Thadomal Shahani Engineering College, Mumbai, India
| | - Suditi Neekhra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Barkha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
10
|
Pseudomonas aeruginosa Stimulates Inflammation and Enhances Kaposi's Sarcoma Herpesvirus-Induced Cell Proliferation and Cellular Transformation through both Lipopolysaccharide and Flagellin. mBio 2020; 11:mBio.02843-20. [PMID: 33173008 PMCID: PMC7667028 DOI: 10.1128/mbio.02843-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inflammation triggered by innate immunity promotes carcinogenesis in cancer. Kaposi's sarcoma (KS), a hyperproliferative and inflammatory tumor caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection, is the most common cancer in AIDS patients. KSHV infection sensitizes cells to pathogen-associated molecular patterns (PAMPs). We examined the role of Pseudomonas aeruginosa, an opportunistic bacterium that can affect AIDS patients, in inflammation and cell proliferation of KSHV-transformed cells. P. aeruginosa stimulation increased cell proliferation and efficiency of colony formation in soft agar of KSHV-transformed rat primary mesenchymal precursor (KMM) cells but had no significant effect on the untransformed (MM) cells. P. aeruginosa stimulation also increased cell proliferation of KSHV-infected human B cells, BJAB, but not the uninfected cells. Mechanistically, P. aeruginosa stimulation resulted in increased inflammatory cytokines and activation of p38, ERK1/2, and JNK mitogen-activated protein kinase (MAPK) pathways in KMM cells while having no obvious effect on MM cells. P. aeruginosa induction of inflammation and MAPKs was observed with and without inhibition of the Toll-like receptor 4 (TLR4) pathway, while a flagellin-deleted mutant of P. aeruginosa required a functional TLR4 pathway to induce inflammation and MAPKs. Furthermore, treatment with either lipopolysaccharide (LPS) or flagellin alone was sufficient to induce inflammatory cytokines, activate MAPKs, and increase cell proliferation and efficiency of colony formation in soft agar of KMM cells. These results demonstrate that both LPS and flagellin are PAMPs that contribute to P. aeruginosa induction of inflammation in KSHV-transformed cells. Because AIDS-KS patients are susceptible to P. aeruginosa infection, our work highlights the preventive and therapeutic potential of targeting P. aeruginosa infection in these patients.IMPORTANCE Kaposi's sarcoma (KS), caused by infection with Kaposi's sarcoma-associated herpesvirus (KSHV), is one of the most common cancers in AIDS patients. KS is a highly inflammatory tumor, but how KSHV infection induces inflammation remains unclear. We have previously shown that KSHV infection upregulates Toll-like receptor 4 (TLR4), sensitizing cells to lipopolysaccharide (LPS) and Escherichia coli In the current study, we examined the role of Pseudomonas aeruginosa, an opportunistic bacterium that can affect AIDS patients, in inflammation and cell proliferation of KSHV-transformed cells. P. aeruginosa stimulation increased cell proliferation, inflammatory cytokines, and activation of growth and survival pathways in KSHV-transformed cells through two pathogen-associated molecular patterns, LPS and flagellin. Because AIDS-KS patients are susceptible to P. aeruginosa infection, our work highlights the preventive and therapeutic potential of targeting P. aeruginosa infection in these patients.
Collapse
|
11
|
Shetab Boushehri MA, Yazeji T, Stein V, Lamprecht A. Modulation of Nanostructure-Based Lipopolysaccharide Active Immunotherapy in Cancer: Size and Composition Determine Short- and Long-Term Tolerability. Mol Pharm 2019; 16:4507-4518. [DOI: 10.1021/acs.molpharmaceut.9b00631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Tawfek Yazeji
- Department of Pharmaceutics, University of Bonn, Bonn 53121, Germany
| | - Valentin Stein
- Institute of Physiology, Medical Faculty, University of Bonn, Bonn 53113, Germany
| | - Alf Lamprecht
- Department of Pharmaceutics, University of Bonn, Bonn 53121, Germany
- PEPITE EA4267, Univ. Bourgonge Franch-Comte, Besançon 25030, France
| |
Collapse
|