1
|
Dully M, Ceresnakova M, Murray D, Soulimane T, Hudson SP. Lipid Cubic Systems for Sustained and Controlled Delivery of Antihistamine Drugs. Mol Pharm 2021; 18:3777-3794. [PMID: 34547899 PMCID: PMC8493555 DOI: 10.1021/acs.molpharmaceut.1c00279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 12/03/2022]
Abstract
Antihistamines are capable of blocking mediator responses in allergic reactions including allergic rhinitis and dermatological reactions. By incorporating various H1 receptor antagonists into a lipid cubic phase network, these active ingredients can be delivered locally over an extended period of time owing to the mucoadhesive nature of the system. Local delivery can avoid inducing unwanted side effects, often observed after systematic delivery. Lipid-based antihistamine delivery systems are shown here to exhibit prolonged release capabilities. In vitro drug dissolution studies investigated the extent and release rate of two model first-generation and two model second-generation H1 antagonist antihistamine drugs from two monoacyglycerol-derived lipid models. To optimize the formulation approach, the systems were characterized macroscopically and microscopically by small-angle X-ray scattering and polarized light to ascertain the mesophase accessed upon an incorporation of antihistamines of varying solubilities and size. The impact of encapsulating the antihistamine molecules on the degree of mucoadhesivity of the lipid cubic systems was investigated using multiparametric surface plasmon resonance. With the ultimate goal of developing therapies for the treatment of allergic reactions, the ability of the formulations to inhibit mediator release utilizing RBL-2H3 mast cells with the propensity to release histamine upon induction was explored, demonstrating no interference from the lipid excipient on the effectiveness of the antihistamine molecules.
Collapse
Affiliation(s)
- Michele Dully
- Department
of Chemical Sciences, SSPC, the Science Foundation Ireland Research
Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy,
Co. Limerick V94 T9PX, Ireland
| | - Miriama Ceresnakova
- Department
of Chemical Sciences, SSPC, the Science Foundation Ireland Research
Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy,
Co. Limerick V94 T9PX, Ireland
| | - David Murray
- COOK
Ireland Limited, O’Halloran
Rd, Castletroy, Co. Limerick V94 N8X2, Ireland
| | - Tewfik Soulimane
- Department
of Chemical Sciences, SSPC, the Science Foundation Ireland Research
Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy,
Co. Limerick V94 T9PX, Ireland
| | - Sarah P. Hudson
- Department
of Chemical Sciences, SSPC, the Science Foundation Ireland Research
Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy,
Co. Limerick V94 T9PX, Ireland
| |
Collapse
|
2
|
Costa CP, Cunha S, Moreira JN, Silva R, Gil-Martins E, Silva V, Azevedo L, Peixoto AF, Sousa Lobo JM, Silva AC. Quality by design (QbD) optimization of diazepam-loaded nanostructured lipid carriers (NLC) for nose-to-brain delivery: Toxicological effect of surface charge on human neuronal cells. Int J Pharm 2021; 607:120933. [PMID: 34324988 DOI: 10.1016/j.ijpharm.2021.120933] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022]
Abstract
Diazepam is commonly used in the management of epileptic seizures, although it has limitations that can be overcome by using formulations that are easier to administer and capable of directing the drug to the brain. In this field, it has been reported that the use of nanostructured lipid carriers (NLC) via intranasal (or via nose-to-brain) promotes the targeting of drugs to the brain, improving the effectiveness of therapy. The aim of this work was to optimize two diazepam-loaded NLC formulations for nose-to-brain delivery, one with positive surface charge and one with negative surface charge. The quality by design (QbD) approach was used to design the experiments, where the quality target product profile (QTPP), the risk assessment and the critical quality attributes (CQAs) were defined to ensure safety, efficacy and quality of the final formulations. The experiments started with the optimization of critical material attributes (CMAs), related to the ratios of lipids and emulsifiers, followed by the selection of critical process parameters (CPPs), related to the production methods of the diazepam-loaded NLC formulation (ultrasound technique and high-pressure homogenization - HPH). Afterwards, the positive surface charge of the diazepam-loaded NLC was optimized. Finally, the biocompatibility with human neuronal cells of the formulation with a negative surface charge and of the formulation with a positive surface charge was evaluated. The results of the optimization of the CMAs showed that the ratios of lipids and emulsifiers more adequate were 6.7:2.9 and 4.2:0.3 (% w,w), respectively. Regarding the CPPs, HPH was considered the most suitable production method, resulting in an optimized diazepam-loaded NLC formulation (F1C15) with negative surface charge, showing particle size of 69.59 ± 0.22 nm, polydispersity index (PDI) of 0.19 ± 0.00, zeta potential (ZP) of -23.50 ± 0.24 mV and encapsulation efficiency (EE) of 96.60 ± 0.03 %. The optimized diazepam-loaded NLC formulation (F2A8) with positive surface charge had particle size of 124.40 ± 0.84 nm, PDI of 0.17 ± 0.01, ZP of 32.60 ± 1.13 mV and EE of 95.76 ± 0.24 %. In addition, the incorporation of diazepam in NLC resulted in a sustained release of the drug. No significant changes in particle size, PDI, ZP and EE were observed for the formulation F1C15, after 3 months of storage, whereas for formulation F2A8, particle size increased significantly. Biocompatibility studies showed that the formulation F2A8 was more cytotoxic than the formulation F1C15. Thereby, we conclude that the formulation F1C15 is more suitable for targeting the brain, when compared with the formulation F2A8. From the results of these studies, it can be confirmed that the QbD approach is an adequate and central tool to optimize NLC formulations.
Collapse
Affiliation(s)
- C P Costa
- UCIBIO/REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - S Cunha
- UCIBIO/REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - J N Moreira
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Pólo I), University of Coimbra, 3004-531 Coimbra, Portugal; UC - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - R Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal
| | - E Gil-Martins
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal
| | - V Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal
| | - L Azevedo
- UCIBIO/REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - A F Peixoto
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - J M Sousa Lobo
- UCIBIO/REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - A C Silva
- UCIBIO/REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; FP-ENAS (UFP Energy, Environment and Health Research Unit), CEBIMED (Biomedical Research Centre), Faculty of Health Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal.
| |
Collapse
|
3
|
Onishi H, Sakata O. Preparation and evaluation of fast-dissolving films of etilefrine hydrochloride for practical buccal dosing. Pharm Dev Technol 2021; 26:610-616. [PMID: 33736577 DOI: 10.1080/10837450.2021.1904260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Etilefrine hydrochloride (ET) is an important drug in the treatment of hypotension, and parenteral injections and oral tablets are the conventional dosage forms. However, parenteral injections may cause abnormally high plasma levels as well as pain and necrosis, and oral tablets undergo first-pass metabolism. Although fast-dissolving buccal tablets were previously reported, the initial absorption rate was a little slow and the plasma levels were varied extensively. Recently, many films have been developed as novel dosage forms. Therefore, in the present study, film dosage forms containing ET were produced using water-soluble polymers and glycerin (GLY) as excipients to obtain a practical buccal dosage form. Films composed of ET, GLY, and sodium alginate (AL) exhibited good physical characteristics and rapid release in vitro (more than 70% at 2 min). The compacted AL film containing 2 mg ET (1 × 1 cm) exhibited rapid absorption (>19 ng/mL at 0.5 h), maintained an effective plasma level (>7 ng/mL) for a long time period (0.5-4 h), and had an adequate plasma concentration-time profile with a smaller standard error (<15.3 ng/mL). These results suggest that the present compacted buccal film is a superior dosage form of ET for practical use.
Collapse
Affiliation(s)
- Hiraku Onishi
- Department of Drug Delivery Research, Hoshi University, Tokyo, Japan
| | - Osamu Sakata
- Department of Drug Delivery Research, Hoshi University, Tokyo, Japan
| |
Collapse
|
4
|
Sakata O, Onishi H. Preparation of orally fast-dissolving tablets of etilefrine hydrochloride to achieve efficient absorption. Pharm Dev Technol 2020; 25:1162-1167. [PMID: 32644855 DOI: 10.1080/10837450.2020.1794000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Etilefrine hydrochloride (ET) is commonly used in the treatment of hypotension in dosage forms of oral tablets and parenteral injections. However, oral tablets only temporarily achieve high plasma levels and have low bioavailability (BA), while intravenous injections may cause pain and necrosis around administration sites. In an attempt to overcome these limitations, the buccal delivery of ET using oral droplets has been investigated. In this study, a buccal tablet as an alternative dosage form was developed for practical use. Buccal tablets were prepared by the direct compression method with sodium alginate (AL) and mannitol (MA) as excipients. Their disintegration and in vitro drug release were rapid (more than 50% being released after 3 min). Furthermore, effective plasma levels (> 5-7 ng/mL) were reached within 0.5 h of buccal administration in rats. The systemic absorption of these tablets was similar to that of buccal droplets. Therefore, the ET buccal tablets developed herein have potential as an alternative dosage form for hypotension therapy.
Collapse
Affiliation(s)
- Osamu Sakata
- Department of Drug Delivery Research, Hoshi University, Tokyo, Japan
| | - Hiraku Onishi
- Department of Drug Delivery Research, Hoshi University, Tokyo, Japan
| |
Collapse
|
5
|
Cunha S, Costa CP, Loureiro JA, Alves J, Peixoto AF, Forbes B, Sousa Lobo JM, Silva AC. Double Optimization of Rivastigmine-Loaded Nanostructured Lipid Carriers (NLC) for Nose-to-Brain Delivery Using the Quality by Design (QbD) Approach: Formulation Variables and Instrumental Parameters. Pharmaceutics 2020; 12:E599. [PMID: 32605177 PMCID: PMC7407548 DOI: 10.3390/pharmaceutics12070599] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 01/02/2023] Open
Abstract
Rivastigmine is a drug commonly used in the management of Alzheimer's disease that shows bioavailability problems. To overcome this, the use of nanosystems, such as nanostructured lipid carriers (NLC), administered through alternative routes seems promising. In this work, we performed a double optimization of a rivastigmine-loaded NLC formulation for direct drug delivery from the nose to the brain using the quality by design (QbD) approach, whereby the quality target product profile (QTPP) was the requisite for nose to brain delivery. The experiments started with the optimization of the formulation variables (or critical material attributes-CMAs) using a central composite design. The rivastigmine-loaded NLC formulations with the best critical quality attributes (CQAs) of particle size, polydispersity index (PDI), zeta potential (ZP), and encapsulation efficiency (EE) were selected for the second optimization, which was related to the production methods (ultrasound technique and high-pressure homogenization). The most suitable instrumental parameters for the production of NLC were analyzed through a Box-Behnken design, with the same CQAs being evaluated for the first optimization. For the second part of the optimization studies, were selected two rivastigmine-loaded NLC formulations: one produced by ultrasound technique and the other by the high-pressure homogenization (HPH) method. Afterwards, the pH and osmolarity of these formulations were adjusted to the physiological nasal mucosa values and in vitro drug release studies were performed. The results of the first part of the optimization showed that the most adequate ratios of lipids and surfactants were 7.49:1.94 and 4.5:0.5 (%, w/w), respectively. From the second part of the optimization, the results for the particle size, PDI, ZP, and EE of the rivastigmine-loaded NLC formulations produced by ultrasound technique and HPH method were, respectively, 114.0 ± 1.9 nm and 109.0 ± 0.9 nm; 0.221 ± 0.003 and 0.196 ± 0.007; -30.6 ± 0.3 mV and -30.5 ± 0.3 mV; 97.0 ± 0.5% and 97.2 ± 0.3%. Herein, the HPH was selected as the most suitable production method, although the ultrasound technique has also shown effectiveness. In addition, no significant changes in CQAs were observed after 90 days of storage of the formulations at different temperatures. In vitro studies showed that the release of rivastigmine followed a non-Fickian mechanism, with an initial fast drug release followed by a prolonged release over 48 h. This study has optimized a rivastigmine-loaded NLC formulation produced by the HPH method for nose-to-brain delivery of rivastigmine. The next step is for in vitro and in vivo experiments to demonstrate preclinical efficacy and safety. QbD was demonstrated to be a useful approach for the optimization of NLC formulations for which specific physicochemical requisites can be identified.
Collapse
Affiliation(s)
- Sara Cunha
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.); (C.P.C.); (J.M.S.L.)
| | - Cláudia Pina Costa
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.); (C.P.C.); (J.M.S.L.)
| | - Joana A. Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
| | | | - Andreia F. Peixoto
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Ben Forbes
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9NH, UK;
| | - José Manuel Sousa Lobo
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.); (C.P.C.); (J.M.S.L.)
| | - Ana Catarina Silva
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.); (C.P.C.); (J.M.S.L.)
- UFP Energy, Environment and Health Research Unit (FP ENAS), Fernando Pessoa University, 4249-004 Porto, Portugal
| |
Collapse
|
6
|
Onishi H, Sakata O. Absorption behavior of etilefrine after buccal administration in rats. Int J Pharm 2018; 550:14-23. [DOI: 10.1016/j.ijpharm.2018.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/24/2018] [Accepted: 08/08/2018] [Indexed: 01/21/2023]
|
7
|
Mathur D, Singh S, Mehta A, Agrawal P, Raghava GPS. In silico approaches for predicting the half-life of natural and modified peptides in blood. PLoS One 2018; 13:e0196829. [PMID: 29856745 PMCID: PMC5983457 DOI: 10.1371/journal.pone.0196829] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 04/22/2018] [Indexed: 11/19/2022] Open
Abstract
This paper describes a web server developed for designing therapeutic peptides with desired half-life in blood. In this study, we used 163 natural and 98 modified peptides whose half-life has been determined experimentally in mammalian blood, for developing in silico models. Firstly, models have been developed on 261 peptides containing natural and modified residues, using different chemical descriptors. The best model using 43 PaDEL descriptors got a maximum correlation of 0.692 between the predicted and the actual half-life peptides. Secondly, models were developed on 163 natural peptides using amino acid composition feature of peptides and achieved a maximum correlation of 0.643. Thirdly, models were developed on 163 natural peptides using chemical descriptors and attained a maximum correlation of 0.743 using 45 selected PaDEL descriptors. In order to assist researchers in the prediction and designing of half-life of peptides, the models developed have been integrated into PlifePred web server (http://webs.iiitd.edu.in//raghava/plifepred/).
Collapse
Affiliation(s)
- Deepika Mathur
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sandeep Singh
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ayesha Mehta
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Piyush Agrawal
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Gajendra P. S. Raghava
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
- Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
- * E-mail: ,
| |
Collapse
|
8
|
Kaplan M, Tuğcu-Demiröz F, Vural İ, Çelebi N. Development and characterization of gels and liposomes containing ovalbumin for nasal delivery. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Abstract
TopicalPdb (http://crdd.osdd.net/raghava/topicalpdb/) is a repository of experimentally verified topically delivered peptides. Data was manually collected from research articles. The current release of TopicalPdb consists of 657 entries, which includes peptides delivered through the skin (462 entries), eye (173 entries), and nose (22 entries). Each entry provides comprehensive information related to these peptides like the source of origin, nature of peptide, length, N- and C-terminal modifications, mechanism of penetration, type of assays, cargo and biological properties of peptides, etc. In addition to natural peptides, TopicalPdb contains information of peptides having non-natural, chemically modified residues and D-amino acids. Besides this primary information, TopicalPdb stores predicted tertiary structures as well as peptide sequences in SMILE format. Tertiary structures of peptides were predicted using state-of-art method PEPstrMod. In order to assist users, a number of web-based tools have been integrated that includes keyword search, data browsing, similarity search and structural similarity. We believe that TopicalPdb is a unique database of its kind and it will be very useful in designing peptides for non-invasive topical delivery.
Collapse
|
10
|
Mura P, Mennini N, Nativi C, Richichi B. In situ mucoadhesive-thermosensitive liposomal gel as a novel vehicle for nasal extended delivery of opiorphin. Eur J Pharm Biopharm 2018; 122:54-61. [DOI: 10.1016/j.ejpb.2017.10.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/07/2017] [Accepted: 10/10/2017] [Indexed: 01/13/2023]
|
11
|
Brown AP, Saravanan C, Devine P, Magnifico M, Gao J, Beaulieu V, Ma F, Yasoshima K, Barnes-Seeman D, Yamada K. Correlation Between Nasal Epithelial Injury and In Vitro Cytotoxicity Using a Series of Small Molecule Protein Tyrosine Phosphatase 1B Inhibitors Investigated for Reversal of Leptin Resistance in Obesity. Int J Toxicol 2017; 36:303-313. [PMID: 28592157 DOI: 10.1177/1091581817711877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This research provides a cautionary example when evaluating changes in behavioral end points with respect to postulated pharmacologic activity. Various small molecule substrate mimetic protein tyrosine phosphatase 1B (PTP1B) inhibitors were investigated as pharmacologic agents for decreasing food consumption using intranasal (IN) dosing as a means for direct nose-to-brain delivery along the olfactory/trigeminal nerve pathways. Although food consumption was decreased in diet-induced obese (DIO) mice, nasal discharge was observed. Studies were conducted to investigate local effects on the nasal airway and to develop structure-activity relationships. Intranasal administration of PTP1B inhibitors at ≥0.03 mg/d to DIO mice produced dose-dependent injury to various cell types of the nasal epithelia. Protein tyrosine phosphatase 1B inhibitors with calculated log octanol >3.0 were the most toxic. Whereas a pharmacologically inactive analog of a PTP1B inhibitor produced nasal injury, along with decreased food consumption, the marketed IN drug ketorolac produced no lesions at the same dose of 0.3 mg/d and only minor changes at 3 mg/d. Rat skin fibroblast cells were exposed in vitro to PTP1B inhibitors, ketorolac, paraquat, and the detergent sodium dodecylbenzene sulfonate (NDS) followed by measures of cytotoxicity. The most potent PTP1B inhibitors were similar to NDS, whereas ketorolac was the least toxic compound. Cytotoxic potency in vitro was similar to in vivo. In conclusion, PTP1B inhibitors injured nasal epithelium through a mechanism independent of PTP1B inhibition and likely due to nonspecific cytotoxicity such as disruption of the cell membrane. Decreased food consumption in DIO mice was due to toxicity rather than a pharmacologic mode of action.
Collapse
Affiliation(s)
- Alan P Brown
- 1 Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Patrick Devine
- 1 Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Maria Magnifico
- 1 Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Jiaping Gao
- 1 Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Valerie Beaulieu
- 1 Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Fupeng Ma
- 1 Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Kayo Yasoshima
- 1 Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | | | - Ken Yamada
- 1 Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| |
Collapse
|
12
|
Shioda S, Nakamachi T. PACAP as a neuroprotective factor in ischemic neuronal injuries. Peptides 2015; 72:202-7. [PMID: 26275482 DOI: 10.1016/j.peptides.2015.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 27- or 38-amino acid neuropeptide, which belongs to the vasoactive intestinal polypeptide/glucagon/secretin family. PACAP and its three receptor subtypes are expressed in neural tissues, with PACAP known to exert pleiotropic effects on the nervous system. This review provides an overview of current knowledge regarding the neuroprotective effects, mechanisms of action, and therapeutic potential of PACAP in response to ischemic brain injuries.
Collapse
Affiliation(s)
- Seiji Shioda
- Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| |
Collapse
|
13
|
Yaksh TL, Woller SA, Ramachandran R, Sorkin LS. The search for novel analgesics: targets and mechanisms. F1000PRIME REPORTS 2015; 7:56. [PMID: 26097729 PMCID: PMC4447049 DOI: 10.12703/p7-56] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The management of the pain state is of great therapeutic relevance to virtually every medical specialty. Failure to manage its expression has deleterious consequence to the well-being of the organism. An understanding of the complex biology of the mechanisms underlying the processing of nociceptive information provides an important pathway towards development of novel and robust therapeutics. Importantly, preclinical models have been of considerable use in determining the linkage between mechanism and the associated behaviorally defined pain state. This review seeks to provide an overview of current thinking targeting pain biology, the use of preclinical models and the development of novel pain therapeutics. Issues pertinent to the strengths and weaknesses of current development strategies for analgesics are considered.
Collapse
|
14
|
Hearst SM, Shao Q, Lopez M, Raucher D, Vig PJS. The design and delivery of a PKA inhibitory polypeptide to treat SCA1. J Neurochem 2014; 131:101-14. [PMID: 24903464 DOI: 10.1111/jnc.12782] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 05/13/2014] [Accepted: 06/02/2014] [Indexed: 01/28/2023]
Abstract
Spinocerebellar ataxia-1 (SCA1) is a neurodegenerative disease that primarily targets Purkinje cells (PCs) of the cerebellum. The exact mechanism of PC degeneration is unknown, however, it is widely believed that mutant ataxin-1 becomes toxic because of the phosphorylation of its serine 776 (S776) residue by cAMP-dependent protein kinase A (PKA). Therefore, to directly modulate mutant ATXN1 S776 phosphorylation and aggregation, we designed a therapeutic polypeptide to inhibit PKA. This polypeptide comprised of a thermally responsive elastin-like peptide (ELP) carrier, which increases peptide half-life, a PKA inhibitory peptide (PKI), and a cell-penetrating peptide (Synb1). We observed that our therapeutic polypeptide, Synb1-ELP-PKI, inhibited PKA activity at concentrations similar to the PKI peptide. Additionally, Synb1-ELP-PKI significantly suppressed mutant ATXN1 S776 phosphorylation and intranuclear inclusion formation in cell culture. Further, Synb1-ELP-PKI treatment improved SCA1 PC morphology in cerebellar slice cultures. Furthermore, the Synb1-ELP peptide carrier crossed the blood-brain barrier and localized to the cerebellum via the i.p. or intranasal route. Here, we show the intranasal delivery of ELP-based peptides to the brain as a novel delivery strategy. We also demonstrate that our therapeutic polypeptide has a great potential to target the neurotoxic S776 phosphorylation pathway in the SCA1 disease.
Collapse
Affiliation(s)
- Scoty M Hearst
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, USA; Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | | | | | |
Collapse
|
15
|
Morimoto BH, Fox AW, Stewart AJ, Gold M. Davunetide: a review of safety and efficacy data with a focus on neurodegenerative diseases. Expert Rev Clin Pharmacol 2013; 6:483-502. [PMID: 23971871 DOI: 10.1586/17512433.2013.827403] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Davunetide is the first neuroprotective peptide in its class, and has preclinical evidence for neuroprotective, neurotrophic and cognitive protective properties. Davunetide has also been shown to prevent apoptosis or programmed-cell death in a range of in vitro and in vivo models by promoting microtubule stabilization. Potential clinical uses of davunetide include neurodegenerative disorders such as Alzheimer's disease (AD), progressive supranuclear palsy (PSP), frontotemporal dementia (FTD) or cognitive impairment in other diseases such as schizophrenia where microtubule structure and function is known to be impaired. The nonclinical and clinical safety of davunetide is reviewed here in detail. Pre-clinical toxicology studies in rats and dogs using the maximum feasible dose of davunetide provide strong evidence that davunetide is well-tolerated. Similarly, data from 10 separate clinical trials of davunetide, investigating safety and efficacy provide evidence that davunetide is generally safe and well-tolerated, and has shown some signs of clinical efficacy.
Collapse
Affiliation(s)
- Bruce H Morimoto
- Allon Therapeutics Inc., 1168 Hamilton Street, Suite 506, Vancouver, British Columbia, Canada V6B 2S2
| | | | | | | |
Collapse
|