1
|
Liu P, Zhang B, Li Y, Yuan Q. Potential mechanisms of cancer prevention and treatment by sulforaphane, a natural small molecule compound of plant-derived. Mol Med 2024; 30:94. [PMID: 38902597 PMCID: PMC11191161 DOI: 10.1186/s10020-024-00842-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Despite recent advances in tumor diagnosis and treatment technologies, the number of cancer cases and deaths worldwide continues to increase yearly, creating an urgent need to find new methods to prevent or treat cancer. Sulforaphane (SFN), as a member of the isothiocyanates (ITCs) family, which is the hydrolysis product of glucosinolates (GLs), has been shown to have significant preventive and therapeutic cancer effects in different human cancers. Early studies have shown that SFN scavenges oxygen radicals by increasing cellular defenses against oxidative damage, mainly through the induction of phase II detoxification enzymes by nuclear factor erythroid 2-related factor 2 (Nrf2). More and more studies have shown that the anticancer mechanism of SFN also includes induction of apoptotic pathway in tumor cells, inhibition of cell cycle progression, and suppression of tumor stem cells. Therefore, the application of SFN is expected to be a necessary new approach to treating cancer. In this paper, we review the multiple molecular mechanisms of SFN in cancer prevention and treatment in recent years, which can provide a new vision for cancer treatment.
Collapse
Affiliation(s)
- Pengtao Liu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Bo Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yuanqiang Li
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China.
| |
Collapse
|
2
|
Hua C, Qiu L. Polymersomes for Therapeutic Protein and Peptide Delivery: Towards Better Loading Properties. Int J Nanomedicine 2024; 19:2317-2340. [PMID: 38476284 PMCID: PMC10929215 DOI: 10.2147/ijn.s444910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Therapeutics based on proteins and peptides have profoundly transformed the landscape of treatment for diseases, from diabetes mellitus to cancers, yet the short half-life and low bioavailability of therapeutic proteins and peptides hinder their wide applications. To break through this bottleneck, biomolecules-loaded polymersomes with strong adjustability and versatility have attracted more and more attentions recently. Loading proteins or peptides into polymersomes is the first but extremely important step towards developing high-quality formulation products. However, increasing protein and peptide loading content is quite challenging due to the inherent nature of self-assembled vesicle formation mechanism and physiochemical characteristics of biomacromolecules. This review highlights the potential of polymersomes as the next-generation therapeutic proteins and peptides carrier and emphatically introduces novel approaches and recent progress to achieve satisfactory encapsulation capability of polymersomes for proteins and peptides. On the one hand, with the help of intermolecular interactions, such as electrostatic, lipid-protein, and hydrophobic interactions, the drug loading could be significantly improved. On the other hand, loading improvement could be attained through innovation of preparation methods, ranging from modified traditional film hydration techniques to the novel phase-guided assembly method.
Collapse
Affiliation(s)
- Chengxu Hua
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, People’s Republic of China
| | - Liyan Qiu
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, People’s Republic of China
| |
Collapse
|
3
|
Abstract
Since the introduction of insulin almost a century ago, more than 80 peptide drugs have reached the market for a wide range of diseases, including diabetes, cancer, osteoporosis, multiple sclerosis, HIV infection and chronic pain. In this Perspective, we summarize key trends in peptide drug discovery and development, covering the early efforts focused on human hormones, elegant medicinal chemistry and rational design strategies, peptide drugs derived from nature, and major breakthroughs in molecular biology and peptide chemistry that continue to advance the field. We emphasize lessons from earlier approaches that are still relevant today as well as emerging strategies such as integrated venomics and peptide-display libraries that create new avenues for peptide drug discovery. We also discuss the pharmaceutical landscape in which peptide drugs could be particularly valuable and analyse the challenges that need to be addressed for them to reach their full potential.
Collapse
|
4
|
Low YJ, Andriyana A, Ang BC, Zainal Abidin NI. Bioresorbable and degradable behaviors of
PGA
: Current state and future prospects. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25508] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yan Jie Low
- Center of Advanced Materials, Faculty of Engineering University of Malaya Kuala Lumpur Malaysia
- Department of Mechanical Engineering, Faculty of Engineering University of Malaya Kuala Lumpur Malaysia
| | - Andri Andriyana
- Center of Advanced Materials, Faculty of Engineering University of Malaya Kuala Lumpur Malaysia
- Department of Mechanical Engineering, Faculty of Engineering University of Malaya Kuala Lumpur Malaysia
| | - Bee Chin Ang
- Center of Advanced Materials, Faculty of Engineering University of Malaya Kuala Lumpur Malaysia
- Department of Chemical Engineering, Faculty of Engineering University of Malaya Kuala Lumpur Malaysia
| | - Nor Ishida Zainal Abidin
- Center of Advanced Materials, Faculty of Engineering University of Malaya Kuala Lumpur Malaysia
- Department of Mechanical Engineering, Faculty of Engineering University of Malaya Kuala Lumpur Malaysia
| |
Collapse
|
5
|
Zhao YN, Xu X, Wen N, Song R, Meng Q, Guan Y, Cheng S, Cao D, Dong Y, Qie J, Liu K, Zhang Y. A Drug Carrier for Sustained Zero-Order Release of Peptide Therapeutics. Sci Rep 2017; 7:5524. [PMID: 28717204 PMCID: PMC5514143 DOI: 10.1038/s41598-017-05898-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 06/07/2017] [Indexed: 11/23/2022] Open
Abstract
Peptides have great potential as therapeutic agents, however, their clinic applications are severely hampered by their instability and short circulation half-life. Zero-order release carriers could not only extend the circulation lifetime of peptides, but also maintain the plasma drug level constant, and thus maximize their therapeutic efficacy and minimize their toxic effect. Here using PEGylated salmon calcitonin (PEG-sCT)/tannic acid (TA) film as an example, we demonstrated that hydrogen-bonded layer-by-layer films of a PEGylated peptide and a polyphenol could be a platform for zero-order peptide release. The films were fabricated under mild conditions. The second component, TA, is a natural product and presents potential therapeutic activities itself. Unlike common carriers, the new carrier releases the peptide via gradual disintegration of the film because of its dynamic nature. The release of PEG-sCT follows a perfect zero-order kinetics without initial burst release. In addition the release rate could be tuned via external stimuli, such as pH and temperature. When implanted in rats, the films could remain the plasma level of PEG-sCT constant over an extended period. Accordingly, the serum calcium level was reduced and maintained constant over the same period, suggesting an improved therapeutic efficacy of the released drug.
Collapse
Affiliation(s)
- Ya-Nan Zhao
- State Key Laboratory of Medicinal Chemical Biology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| | - Xiaoyu Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Na Wen
- State Key Laboratory of Medicinal Chemical Biology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China
| | - Rui Song
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Ying Guan
- State Key Laboratory of Medicinal Chemical Biology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China.
| | - Siqi Cheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Danni Cao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yansheng Dong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jiankun Qie
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yongjun Zhang
- State Key Laboratory of Medicinal Chemical Biology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300071, China.
| |
Collapse
|