1
|
Zhang CD, Ioachimescu AG. Clinical manifestations and treatment of hypopituitarism due to traumatic brain injury. Best Pract Res Clin Endocrinol Metab 2025:101996. [PMID: 40280796 DOI: 10.1016/j.beem.2025.101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Traumatic brain injury (TBI) is a global health problem with rising incidence. In many patients, pituitary hormone deficiencies after TBI are transient; however, in some cases, they can persist or develop in the chronic phase. Post-traumatic hypopituitarism has a variable clinical course, reflecting its complex pathophysiology and incompletely understood risk factors. The diagnosis can be challenging, because symptoms of hypopituitarism may overlap with other TBI manifestations. Confirmatory endocrine testing is often required for diagnosis. Untreated chronic hypopituitarism can adversely affect physical, neurocognitive, and psychosocial rehabilitation; body composition; glucose metabolism; bone metabolism; and quality of life. Screening for hypopituitarism is recommended after moderate or severe TBI and for selected patients with mild TBI and suggestive clinical symptoms. Management requires an individualized multidisciplinary approach and consideration of endocrine pathology. In this review, we discuss the clinical manifestations and current management standards for hypopituitarism in adults with TBI.
Collapse
Affiliation(s)
- Catherine D Zhang
- Division of Endocrinology and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Adriana G Ioachimescu
- Division of Endocrinology and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
2
|
Kara CS, Karaca Z. Pituitary dysfunction due to sports injuries. Best Pract Res Clin Endocrinol Metab 2025:101995. [PMID: 40185676 DOI: 10.1016/j.beem.2025.101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Traumatic brain injury (TBI) during sports activities may lead to dysfunction of the pituitary gland. Even mild TBIs have been shown to have the potential to induce pituitary dysfunction. The clinical picture of pituitary dysfunction subsequent to TBIs may mimic the post-TBI period itself. Pituitary hormone deficiencies may improve or new ones may be observed over time. For this reason, hypopituitarism should be considered both during the acute phase and in the recovery period. The most prevalent pituitary hormone deficiency that follows a sports injury is growth hormone (GH) deficiency. Despite the established knowledge regarding the deleterious consequences of GH deficiency in the athletes, the efficacy of replacement therapy remains controversial. Concurrently, given the potential for GH to be utilised for doping purposes, a consensus on the monitoring of these patients remains elusive. There is a necessity for further systematic and large-scale studies on the epidemiology, pathophysiological mechanisms, screening algorithms, and prevention strategies related to sports-related pituitary dysfunction.
Collapse
Affiliation(s)
- Canan Sehit Kara
- Department of Endocrinology, Erciyes University Medical School, Kayseri, Turkey.
| | - Zuleyha Karaca
- Department of Endocrinology, Erciyes University Medical School, Kayseri, Turkey.
| |
Collapse
|
3
|
Laway BA, Viswanath S. A, Baba MS, Tramboo NA, Shah ZA, Lone AA, Hafeez I. Anterior pituitary hormone dysfunction among individuals with complete heart block requiring pacemaker. Indian J Med Res 2024; 159:695-701. [PMID: 39382458 PMCID: PMC11463878 DOI: 10.25259/ijmr_622_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 10/10/2024] Open
Abstract
Background & objectives Neuronal hypoxia associated with conditions like traumatic brain injury and cardiac tachyarrhythmia has been implicated in causing hypopituitarism. Individuals with complete heart block (CHB) may be predisposed to develop anterior pituitary hormone dysfunction in the long term. The objective of this study was to investigate anterior pituitary hormone functions in individuals after CHB. Methods This prospective cohort study included 30 individuals (21 men and 9 women) with CHB requiring pacemaker implantation, who were evaluated at admission and then at a mean follow up of 12.4 ± 2.2 months to look for development of any degree of hypopituitarism. In addition to the measurement of hormones like follicle-stimulating hormone (FSH), luteinising hormone (LH), thyroid stimulating hormone (TSH), total tetra iodothyronines (TT4), free tetraiodothyronines (FT4), cortisol, insulin-like growth factor-1 (IGF-1), testosterone and estradiol, a fixed-dose glucagon stimulation test (GST) was performed to assess growth hormone (GH) and adrenocorticotrophic hormone (ACTH) axis. Results The mean age of the participants was 64.9 ± 11.3 yr. At follow up evaluation, 17 (56.7%) had low serum IGF-1, and among them, seven (23%) had growth hormone deficiency (GHD) (peak GH <1.0 ng/ml after GST). Six participants (20%) had ACTH deficiency (peak cortisol <9 ug/dl after GST) and one had TSH deficiency. None had prolactin (PRL) or gonadotropin deficiency. Overall, hormone deficiencies were observed in nine patients (30%). Interpretation & conclusions This pilot study detected loss of anterior pituitary hormones in a significant number of individuals of CHB at 12 months follow up. Unrecognised hypopituitarism may have resulted in significant morbidity and mortality in these individuals.
Collapse
Affiliation(s)
- Bashir Ahmad Laway
- Department of Endocrinology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu & Kashmir, India
| | - Arun Viswanath S.
- Department of Endocrinology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu & Kashmir, India
| | - Mohammad Salem Baba
- Department of Endocrinology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu & Kashmir, India
| | - Nisar Ahmad Tramboo
- Department of Cardiology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu & Kashmir, India
| | - Zaffar Amin Shah
- Department of Immunology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu & Kashmir, India
| | - Ajaz Ahmad Lone
- Department of Cardiology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu & Kashmir, India
| | - Imran Hafeez
- Department of Cardiology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu & Kashmir, India
| |
Collapse
|
4
|
Marina D, Feldt-Rasmussen U, Klose M. Long-term pituitary function and functional and patient-reported outcomes in severe acquired brain injury. Eur J Endocrinol 2024; 190:382-390. [PMID: 38679947 DOI: 10.1093/ejendo/lvae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE Assessment of posttraumatic hypothalamic-pituitary dysfunctions is expected to be the most relevant assessment to offer patients with severe intracranial affection. In this study, we aim to investigate the prevalence of hypopituitarism in patients with severe acquired traumatic brain injury (TBI) compared with nontraumatic brain injury (NTBI) and to relate pituitary insufficiency to functional and patient-reported outcomes. DESIGN This is a prospective study. METHODS We included patients admitted for inpatient neurorehabilitation after severe TBI (N = 42) and NTBI (N = 18). The patients underwent a pituitary function assessment at a mean of 2.4 years after the injury. Functional outcome was assessed by using Functional Independence Measure and Glasgow Outcome Scale-Extended (both 1 year after discharge from neurorehabilitation) and patient-reported outcome was assessed by using Multiple Fatigue Inventory-20 and EQ-5D-3L. RESULTS Hypopituitarism was reported in 10/42 (24%) patients with TBI and 7/18 (39%) patients with NTBI (P = .23). Insufficiencies affected 1 axis in 14/17 (82%) patients (13 hypogonadotropic hypogonadism and 1 growth hormone [GH] deficiency) and 2 axes in 3/17 (18%) patients (1 hypogonadotropic hypogonadism and GH deficiency, and 2 hypogonadotropic hypogonadism and arginin vasopressin deficiency). None had central hypoadrenalism or central hypothyroidism. In patients with both TBI and NTBI, pituitary status was unrelated to functioning and ability scores at 1 year and to patient-reported outcome scores at a mean of 2.4 years after the injury. CONCLUSION Patients with severe acquired brain injury may develop long-term hypothalamus-pituitary insufficiency, with an equal occurrence in patients with TBI and NTBI. In both types of patients, mainly isolated deficiencies, most commonly affecting the gonadal axis, were seen. Insufficiencies were unrelated to functional outcomes and patient-reported outcomes, probably reflecting the complexity and heterogeneous manifestations in both patient groups.
Collapse
Affiliation(s)
- Djordje Marina
- Department of Medical Endocrinology and Metabolism PE2131, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ulla Feldt-Rasmussen
- Department of Medical Endocrinology and Metabolism PE2131, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Clinical Sciences, Institute of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | - Marianne Klose
- Department of Medical Endocrinology and Metabolism PE2131, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
5
|
Mahajan C, Prabhakar H, Bilotta F. Endocrine Dysfunction After Traumatic Brain Injury: An Ignored Clinical Syndrome? Neurocrit Care 2023; 39:714-723. [PMID: 36788181 PMCID: PMC10689524 DOI: 10.1007/s12028-022-01672-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/28/2022] [Indexed: 02/16/2023]
Abstract
Traumatic brain injury (TBI) incurs substantial health and economic burden, as it is the leading reason for death and disability globally. Endocrine abnormalities are no longer considered a rare complication of TBI. The reported prevalence is variable across studies, depending on the time frame of injury, time and type of testing, and variability in hormonal values considered normal across different studies. The present review reports evidence on the endocrine dysfunction that can occur after TBI. Several aspects, including the pathophysiological mechanisms, clinical consequences/challenges (in the acute and chronic phases), screening and diagnostic workup, principles of therapeutic management, and insights on future directions/research agenda, are presented. The management of hypopituitarism following TBI involves hormonal replacement therapy. It is essential for health care providers to be aware of this complication because at times, symptoms may be subtle and may be mistaken to be caused by brain injury itself. There is a need for stronger evidence for establishing recommendations for optimum management so that they can be incorporated as standard of care in TBI management.
Collapse
Affiliation(s)
- Charu Mahajan
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Hemanshu Prabhakar
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Federico Bilotta
- Department of Anesthesiology, Policlinico UmbertoI Hospital, "Sapienza" University of Rome, Rome, Italy.
| |
Collapse
|
6
|
Herodes M, Legaspi A, Garcia JM. Mild traumatic brain injury as a cause of adult growth hormone deficiency: Diagnosis and treatment. Best Pract Res Clin Endocrinol Metab 2023; 37:101818. [PMID: 37666680 DOI: 10.1016/j.beem.2023.101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
In recent years, mild traumatic brain injury (mTBI) has been recognized as a cause of acquired growth hormone deficiency (AGHD) and is likely much more prevalent than previous estimates. There is great overlap between persistent symptoms following mTBI and those of AGHD and it is possible that these persistent symptoms of mTBI are, at least in part, due to or aggravated by AGHD. This article reviews the current literature of AGHD following mTBI, and proposes practice recommendations for the screening, diagnosis, and management of patients with AGHD following mTBI.
Collapse
Affiliation(s)
- Megan Herodes
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - Aviel Legaspi
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.
| | - Jose M Garcia
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW This article reviews hypopituitarism after TBI, the importance of pituitary hormones, and related controversies, concluding with a suggested patient approach. RECENT FINDINGS While earlier studies focused on increased pituitary deficiencies after moderate-severe TBI, recent studies have focused on deficiencies after mild TBI. There has been increasing focus on the role of growth hormone after injury; growth hormone is the most frequent reported deficiency at 1 year post-TBI, and an area with unresolved questions. While more research is needed to quantify the risk of deficiencies in special populations, and establish the natural history, increasing data indicate an increase in hypopituitarism after other acquired brain injuries; the potential role of pituitary hormone deficiencies after stroke and after COVID-19 infection is an area of active inquiry. Given the negative health effects of untreated hypopituitarism and the opportunity to intervene via hormone replacement, it is important to recognize the role of pituitary hormone deficiencies after TBI.
Collapse
Affiliation(s)
- Tamara L Wexler
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, 240 E 38th St 15th Floor, New York, NY, 10016, USA.
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Wexler TL, Reifschneider K, Backeljauw P, Cárdenas JF, Hoffman AR, Miller BS, Yuen KCJ. Growth Hormone Deficiency following Traumatic Brain Injury in Pediatric and Adolescent Patients: Presentation, Treatment, and Challenges of Transitioning from Pediatric to Adult Services. J Neurotrauma 2023. [PMID: 36825511 DOI: 10.1089/neu.2022.0384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Traumatic brain injury (TBI) is increasingly recognized, with an incidence of approximately 110 per 100,000 in pediatric populations and 618 per 100,000 in adolescent and adult populations. TBI often leads to cognitive, behavioral, and physical consequences, including endocrinopathies. Deficiencies in anterior pituitary hormones (e.g., adrenocorticotropic hormone, thyroid-stimulating hormone, gonadotropins, and growth hormone [GH]) can negatively impact health outcomes and quality of life post-TBI. This review focuses on GH deficiency (GHD), the most common post-TBI pituitary hormone deficiency. GHD is associated with abnormal body composition, lipid metabolism, bone mineral density, executive brain functions, behavior, and height outcomes in pediatric, adolescent, and transition-age patients. Despite its relatively frequent occurrence, post-TBI GHD has not been well studied in these patients; hence, diagnostic and treatment recommendations are limited. Here, we examine the occurrence and diagnosis of TBI, retrospectively analyze post-TBI hypopituitarism and GHD prevalence rates in pediatric and adolescent patients, and discuss appropriate GHD testing strategies and GH dosage recommendations for these patients. We place particular emphasis on the ways in which testing and dosage recommendations may change during the transition phase. We conclude with a review of the challenges faced by transition-age patients and how these may be addressed to improve access to adequate healthcare. Little information is currently available to help guide patients with TBI and GHD through the transition phase and there is a risk of interrupted care; therefore, a strength of this review is its emphasis on this critical period in a patient's healthcare journey.
Collapse
Affiliation(s)
- Tamara L Wexler
- Department of Rehabilitation Medicine, NYU Langone Health, New York, New York, USA
- Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kent Reifschneider
- Children's Hospital of The King's Daughters, Eastern Virginia Medical Center, Norfolk, Virginia, USA
| | - Philippe Backeljauw
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Javier F Cárdenas
- Barrow Concussion and Brain Injury Center, Barrow Neurological Institute, University of Arizona College of Medicine and Creighton School of Medicine, Phoenix, Arizona, USA
| | - Andrew R Hoffman
- Department of Medicine, Division of Endocrinology, Metabolism and Gerontology, Stanford University School of Medicine, Stanford, California, USA
| | - Bradley S Miller
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Minnesota Medical School, M Health Fairview Masonic Children's Hospital, Minneapolis, Minnesota, USA
| | - Kevin C J Yuen
- Barrow Pituitary Center, Barrow Neurological Institute, University of Arizona College of Medicine and Creighton School of Medicine, Phoenix, Arizona, USA
| |
Collapse
|
9
|
McLoughlin RJ, Lu Z, Warneryd AC, Swanson RL. A Systematic Review of Testosterone Therapy in Men With Spinal Cord Injury or Traumatic Brain Injury. Cureus 2023; 15:e34264. [PMID: 36855479 PMCID: PMC9968415 DOI: 10.7759/cureus.34264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
Spinal cord injuries (SCI) and traumatic brain injuries (TBI) increase the risk of testosterone deficiency and result in adverse changes in body composition and poor functional outcomes. The current systematic review aims to provide insights into the use of testosterone therapy for treating men with SCI and TBI. The PubMed and EMBASE databases were systematically reviewed using appropriate terms, and resulting manuscripts were screened using defined Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. The patient population included male patients with SCI or TBI. Further inclusion criteria were: a) human participants 18 years of age or older; b) manuscript published in English; c) study included an intervention with exogenous testosterone; and d) articles published in peer-reviewed journals with full text available. Two reviewers independently extracted data regarding injury type, intervention, and outcomes. Following screening for inclusion/exclusion criteria, a total of 12 primary research studies conducted over the last 30 years were included. Men with SCI were investigated in 11 articles. The combination of testosterone patches and resistance training with functional electrical stimulation (FES) for 16 weeks in men with SCI and an average baseline testosterone level above the cutoff for testosterone deficiency increased muscle mass, strength, bone quality, and basal metabolic rate while testosterone patches without exercise for 16 weeks produced no significant changes in these parameters. Testosterone patches for 12 months in men with SCI and testosterone deficiency also increased lean tissue mass (LTM) and resting energy expenditure (REE). In one study, men with TBI and testosterone deficiency receiving testosterone gel for eight weeks showed a non-statistically significant greater absolute change in functional independence measure (FIM) and grip strength compared to a placebo group. Testosterone therapy with exercise may help improve muscle mass, bone health, strength, energy expenditure, and cardiac health in men with SCI without major side effects. It is difficult to draw conclusions regarding the effects of testosterone therapy in men with TBI based on the limited available evidence. Further investigation is warranted to explore the relationship between testosterone therapy and recovery after SCI and TBI.
Collapse
Affiliation(s)
- Ryan J McLoughlin
- Physical Medicine and Rehabilitation, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Zhiye Lu
- Physical Medicine and Rehabilitation, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Amelie C Warneryd
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, USA
| | - Randel L Swanson
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA (Veteran Affairs) Medical Center, Philadelphia, USA.,Physical Medicine and Rehabilitation, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| |
Collapse
|
10
|
Castellano AK, Powell JR, Cools MJ, Walton SR, Barnett RR, DeLellis SM, Goldberg RL, Kane SF, Means GE, Zamora CA, Depenbrock PJ, Mihalik JP. Relationship between Anterior Pituitary Volume and IGF-1 Serum Levels in Soldiers with Mild Traumatic Brain Injury History. Med Sci Sports Exerc 2022; 54:1364-1370. [PMID: 35838301 PMCID: PMC9287595 DOI: 10.1249/mss.0000000000002892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE A high mild traumatic brain injury (mTBI) incidence rate exists in military and sport. Hypopituitarism is an mTBI sequela; however, few studies have examined this phenomenon in those with an mTBI history. This cross-sectional study of Special Operations Forces combat soldiers aimed 1) to relate anterior pituitary gland volumes (actual and normalized) to insulin-like growth factor 1 (IGF-1) concentrations, 2) to examine the effect of mTBI history on anterior pituitary gland volumes (actual and normalized) and IGF-1 concentrations, and 3) to measure the odds of demonstrating lower anterior pituitary gland volumes (actual and normalized) or IGF-1 concentrations if self-reporting mTBI history. METHODS Anterior pituitary gland volumes were manually segmented from T1-weighted 3D brain MRI sequences; IGF-1 serum concentrations were quantified using commercial enzyme-linked immunosorbent assays. Correlations and linear regression were used to determine the association between IGF-1 serum concentration and anterior pituitary gland volume (n = 74). Independent samples t-tests were used to compare outcomes between mTBI groups and logistic regression models were fit to test the odds of demonstrating IGF-1 concentration or anterior pituitary volume less than sample median based on mTBI group (n = 54). RESULTS A significant linear relationship between the subjects' anterior pituitary gland volumes and IGF-1 concentrations (r72 = 0.35, P = 0.002) was observed. Soldiers with mTBI history had lower IGF-1 concentrations (P < 0.001) and lower anterior pituitary gland volumes (P = 0.037) and were at greater odds for IGF-1 serum concentrations less than the sample median (odds ratio = 5.73; 95% confidence interval = 1.77-18.55). CONCLUSIONS Anterior pituitary gland volume was associated with IGF-1 serum concentrations. Mild TBI history may be adversely associated with anterior pituitary gland volumes and IGF-1 concentrations. Longitudinal IGF-1 and anterior pituitary gland monitoring may be indicated in those who report one or more mTBI.
Collapse
Affiliation(s)
- Anna K. Castellano
- Matthew Gfeller Center, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jacob R. Powell
- Matthew Gfeller Center, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Michael J. Cools
- Matthew Gfeller Center, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Samuel R. Walton
- Matthew Gfeller Center, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Randaline R. Barnett
- Matthew Gfeller Center, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Richard L. Goldberg
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Shawn F. Kane
- Department of Family Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Gary E. Means
- United States Army Special Operations Command, Fort Bragg, NC
| | - Carlos A. Zamora
- Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Jason P. Mihalik
- Matthew Gfeller Center, Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
11
|
Neuroinflammation and Hypothalamo-Pituitary Dysfunction: Focus of Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22052686. [PMID: 33799967 PMCID: PMC7961958 DOI: 10.3390/ijms22052686] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of traumatic brain injury (TBI) has increased over the last years with an important impact on public health. Many preclinical and clinical studies identified multiple and heterogeneous TBI-related pathophysiological mechanisms that are responsible for functional, cognitive, and behavioral alterations. Recent evidence has suggested that post-TBI neuroinflammation is responsible for several long-term clinical consequences, including hypopituitarism. This review aims to summarize current evidence on TBI-induced neuroinflammation and its potential role in determining hypothalamic-pituitary dysfunctions.
Collapse
|
12
|
Tritos NA, Biller BMK. Current concepts of the diagnosis of adult growth hormone deficiency. Rev Endocr Metab Disord 2021; 22:109-116. [PMID: 32959175 DOI: 10.1007/s11154-020-09594-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2020] [Indexed: 12/17/2022]
Abstract
In adults, growth hormone (GH) deficiency is associated with increased visceral adiposity, decreased lean body mass, bone mineral density and exercise capacity, dyslipidemia, insulin resistance, increased cardiometabolic and fracture risk, and impaired quality of life. The aim of the present article is to review the diagnosis of GH deficiency in adults. To avoid overdiagnosis of GH deficiency, it is critical to evaluate only patients at risk for pituitary dysfunction, including those who have had sellar masses, pituitary surgery, radiation therapy, traumatic brain injury, subarachnoid hemorrhage or childhood onset GH deficiency. Evaluation for GH deficiency should be undertaken after testing and replacement of other pituitary hormone deficits. Since GH secretion is pulsatile, measuring serum GH levels randomly is not helpful in establishing the diagnosis of GH deficiency. Serum insulin-like growth factor I (IGF-I) levels lack substantial diurnal variation but also lack sufficient sensitivity and specificity in the diagnosis of GH deficiency in adults. However, adults with multiple (≥3) additional pituitary hormone deficiencies, risk factors for hypopituitarism and low serum IGF-I levels are very likely to be GH deficient. In most cases, the diagnosis of GH deficiency requires stimulation testing. These tests involve the administration of a pharmacologic agent that normally stimulates GH release from pituitary somatotrophs, including insulin, glucagon, growth hormone releasing hormone-arginine or macimorelin, followed by sampling of serum specimens at regular intervals for GH assay. Patients with a peak GH level that is below a predetermined cutpoint are classified as GH deficient. A systematic approach to the diagnosis of GH deficiency is essential in order to accurately identify adults who may benefit from GH replacement.
Collapse
Affiliation(s)
- Nicholas A Tritos
- Neuroendocrine Unit and Neuroendocrine and Pituitary Tumor Clinical Center, Massachusetts General Hospital, 100 Blossom Street, Suite 140, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Beverly M K Biller
- Neuroendocrine Unit and Neuroendocrine and Pituitary Tumor Clinical Center, Massachusetts General Hospital, 100 Blossom Street, Suite 140, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
West AN, Diaz-Thomas AM, Shafi NI. Evidence Limitations in Determining Sexually Dimorphic Outcomes in Pediatric Post-Traumatic Hypopituitarism and the Path Forward. Front Neurol 2020; 11:551923. [PMID: 33324312 PMCID: PMC7726201 DOI: 10.3389/fneur.2020.551923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/16/2020] [Indexed: 11/21/2022] Open
Abstract
Neuroendocrine dysfunction can occur as a consequence of traumatic brain injury (TBI), and disruptions to the hypothalamic-pituitary axis can be especially consequential to children. The purpose of our review is to summarize current literature relevant to studying sex differences in pediatric post-traumatic hypopituitarism (PTHP). Our understanding of incidence, time course, and impact is constrained by studies which are primarily small, are disadvantaged by significant methodological challenges, and have investigated limited temporal windows. Because hormonal changes underpin the basis of growth and development, the timing of injury and PTHP testing with respect to pubertal stage gains particular importance. Reciprocal relationships among neuroendocrine function, TBI, adverse childhood events, and physiological, psychological and cognitive sequelae are underconsidered influencers of sexually dimorphic outcomes. In light of the tremendous heterogeneity in this body of literature, we conclude with the common path upon which we must collectively arrive in order to make progress in understanding PTHP.
Collapse
Affiliation(s)
- Alina Nico West
- Division of Critical Care Medicine, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Alicia M Diaz-Thomas
- Division of Endocrinology, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Nadeem I Shafi
- Division of Critical Care Medicine, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
14
|
Ntali G, Tsagarakis S. Pituitary dysfunction after traumatic brain injury: prevalence and screening strategies. Expert Rev Endocrinol Metab 2020; 15:341-354. [PMID: 32967470 DOI: 10.1080/17446651.2020.1810561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Pituitary gland is vulnerable to traumatic brain injury (TBI). As a result a series of neuroendocrine changes appear after head injury; in many occasions they reverse with time, while occasionally new late onset changes may develop. AREAS COVERED In this review, we focus on the prevalence of anterior and posterior pituitary hormonal changes in the acute and chronic post-TBI period in both children and adults. Moreover, we present evidence supporting the need for evaluating pituitary function along with the current suggestions for the most appropriate screening strategies. We attempted to identify all published literature and we conducted an online search of PubMed, from January 1970 to June 2020. EXPERT OPINION Adrenal insufficiency and water metabolism disorders are medical emergencies and should be promptly recognized. Awareness for long-term hormonal derangements is necessary, as they may lead to a series of chronic health issues and compromise quality of life. There is a need for well-designed prospective long-term studies that will estimate pituitary function during the acute and chronic phase after head injury.
Collapse
Affiliation(s)
- Georgia Ntali
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos Hospital , Athens, Greece
| | - Stylianos Tsagarakis
- Department of Endocrinology, Diabetes and Metabolism, Evangelismos Hospital , Athens, Greece
| |
Collapse
|
15
|
Bensalah M, Donaldson M, Labassen M, Cherfi L, Nebbal M, Haffaf EM, Abdennebi B, Guenane K, Kemali Z, Ould Kablia S. Prevalence of hypopituitarism and quality of life in survivors of post-traumatic brain injury. Endocrinol Diabetes Metab 2020; 3:e00146. [PMID: 32704567 PMCID: PMC7375098 DOI: 10.1002/edm2.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 04/08/2020] [Accepted: 04/19/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Hypopituitarism is a recognized sequela of traumatic brain injury (TBI) and may worsen the quality of life (QoL) in survivors. AIMS To assess the prevalence of post-traumatic hypopituitarism (PTHP) and growth hormone deficiency (GHD), and determine their correlation with QoL. METHODS Survivors of moderate to severe TBI were recruited from two Algerian centres. At 3 and 12 months, pituitary function was evaluated using insulin tolerance test (ITT), QoL by growth hormone deficiency in adults' questionnaire (QoL-AGHDA), and 36-item short-form (SF-36) health survey. RESULTS Of 133 (M: 128; F: 5) patients aged 18-65 years, PTHP and GHD were present at 3 and 12 months in 59 (44.4%) and 23 (17.29%), 41/116 (35.3%) and 18 (15.5%). Thirteen patients with GHD at 3 months tested normally at 12 months, while 9 had become GHD at 12 months. At 3 and 12 months, peak cortisol was < 500 nmol/L) in 39 (29.3%) and 29 (25%) patients, but <300 nmol/L in only five and seven. Prevalence for gonadotrophin deficiency was 6.8/8.6%, hypo- and hyperprolactinaemia 6.8/3.8% and 5.2/8.6%, and thyrotrophin deficiency 1.5/0.9%. Mean scores for QoL-AGHDA were higher in patients with PTHP at 3 and 12 months: 7.07 vs 3.62 (P = .001) and in patients with GHD at 12 months: 8.72 vs 4.09 (P = .015). Mean SF-36 scores were significantly lower for PTHP at 3 months. CONCLUSION Prevalence of PTHP and GHD changes with time. AGHDA measures QoL in GHD more specifically than SF-36. Full pituitary evaluation and QoL-AGHDA 12 months after TBI are recommended.
Collapse
Affiliation(s)
| | | | - Malek Labassen
- Endocrinology UnitCentral Hospital of ArmyAlgiersAlgeria
| | - Lyes Cherfi
- Critical Care UnitCentral Hospital of ArmyAlgiersAlgeria
| | | | | | | | - Kamel Guenane
- Critical care UnitSalim Zemirli HospitalAlgiersAlgeria
| | - Zahra Kemali
- Endocrinology UnitCentral Hospital of ArmyAlgiersAlgeria
| | | |
Collapse
|
16
|
Gilis-Januszewska A, Kluczyński Ł, Hubalewska-Dydejczyk A. Traumatic brain injuries induced pituitary dysfunction: a call for algorithms. Endocr Connect 2020; 9:R112-R123. [PMID: 32412425 PMCID: PMC7274553 DOI: 10.1530/ec-20-0117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury affects many people each year, resulting in a serious burden of devastating health consequences. Motor-vehicle and work-related accidents, falls, assaults, as well as sport activities are the most common causes of traumatic brain injuries. Consequently, they may lead to permanent or transient pituitary insufficiency that causes adverse changes in body composition, worrisome metabolic function, reduced bone density, and a significant decrease in one's quality of life. The prevalence of post-traumatic hypopituitarism is difficult to determine, and the exact mechanisms lying behind it remain unclear. Several probable hypotheses have been suggested. The diagnosis of pituitary dysfunction is very challenging both due to the common occurrence of brain injuries, the subtle character of clinical manifestations, the variable course of the disease, as well as the lack of proper diagnostic algorithms. Insufficiency of somatotropic axis is the most common abnormality, followed by presence of hypogonadism, hypothyroidism, hypocortisolism, and diabetes insipidus. The purpose of this review is to summarize the current state of knowledge about post-traumatic hypopituitarism. Moreover, based on available data and on our own clinical experience, we suggest an algorithm for the evaluation of post-traumatic hypopituitarism. In addition, well-designed studies are needed to further investigate the pathophysiology, epidemiology, and timing of pituitary dysfunction after a traumatic brain injury with the purpose of establishing appropriate standards of care.
Collapse
Affiliation(s)
- Aleksandra Gilis-Januszewska
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Krakow, Poland
- Endocrinology Department, University Hospital in Krakow, Krakow, Poland
| | - Łukasz Kluczyński
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Krakow, Poland
- Endocrinology Department, University Hospital in Krakow, Krakow, Poland
- Correspondence should be addressed to Ł Kluczyński:
| | - Alicja Hubalewska-Dydejczyk
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Krakow, Poland
- Endocrinology Department, University Hospital in Krakow, Krakow, Poland
| |
Collapse
|
17
|
Hacioglu A, Kelestimur F, Tanriverdi F. Long-term neuroendocrine consequences of traumatic brain injury and strategies for management. Expert Rev Endocrinol Metab 2020; 15:123-139. [PMID: 32133881 DOI: 10.1080/17446651.2020.1733411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
Introduction: Traumatic brain injuries (TBI) are reported to cause neuroendocrine impairment with a prevalence of 15% with confirmatory testing. Pituitary dysfunction (PD) may have detrimental effects on vital parameters as well as on body composition, cardiovascular functions, cognition, and quality of life. Therefore, much effort has been made to identify predictive factors for post-TBI PD and various screening strategies have been offered.Areas covered: We searched PubMed and reviewed the recent data on clinical perspectives and long-term outcomes as well as predictive factors and screening modalities of post-TBI PD. Inconsistencies in the literature are overviewed and new areas of research are discussed.Expert opinion: Studies investigating biomarkers that will accurately predict TBI patients with a high risk of PD are generally pilot studies with a small number of participants. Anti-pituitary and anti-hypothalamic antibodies, neural proteins, micro-RNAs are promising in this field. As severity of TBI has been the most commonly associated risk factor for post-TBI PD, we suggest prospective screening based on severity of head trauma until new evidence emerges. There is also a need for more studies investigating the clinical effects of hormone replacement in TBI patients with PD.
Collapse
Affiliation(s)
- Aysa Hacioglu
- Department of Endocrinology and Metabolism, Erciyes University Medical School, Kayseri, Turkey
| | - Fahrettin Kelestimur
- Department of Endocrinology and Metabolism, Yeditepe University Medical Faculty, Istanbul, Turkey
| | - Fatih Tanriverdi
- Department of Endocrinology and Metabolism, Memorial Kayseri Hospital, Kayseri, Turkey
| |
Collapse
|
18
|
Abstract
PURPOSE Clinical research studies over the last 15 years have reported a significant burden of hypopituitarism in survivors of traumatic brain injury (TBI). However, debate still exists about the true prevalence of hypopituitarism after head injury. METHODS We have reviewed the literature describing the frequency of post-traumatic hypopituitarism and discuss the factors which may explain the variable frequency of the reported deficits in clinical studies including research methodology and the natural history of the disease. RESULTS Pituitary hormone perturbations in the acute phase following injury are frequent but are difficult to attribute to traumatic pituitary damage due to physiological hormonal changes in acute illness, the confounding effect of medications, other co-morbidities and lack of appropriate control subjects. Nevertheless, a small number of studies have emphasised the clinical importance of acute, dynamic disturbance of the hypothalamic-pituitary-adrenal axis. There is a much larger evidence base examining the frequency of hypopituitarism in the chronic, recovery phase following head injury. These studies report a very broad prevalence of long-term pituitary hormone dysfunction in survivors of TBI. However, systematic review suggests the prevalence to be between 27 and 31%. CONCLUSION Survivors of head injury are at risk of pituitary hormone dysfunction and we suggest an approach to the diagnosis of post-traumatic hypopituitarism in routine clinical practice.
Collapse
Affiliation(s)
- Nigel Glynn
- Department of Endocrinology, Saint Bartholomew's Hospital, London, UK
| | - Amar Agha
- Academic Department of Endocrinology, Beaumont Hospital and the RCSI Medical School, Beaumont Road, Dublin 9, Ireland.
| |
Collapse
|
19
|
Abstract
PURPOSE After traumatic brain injury was accepted as an important etiologic factor of pituitary dysfunction (PD), awareness of risk of developing PD following sports-related traumatic brain injury (SR-TBI) has also increased. However there are not many studies investigating PD following SR-TBIs yet. We aimed to summarize the data reported so far and to discuss screening algorithms and treatment strategies. METHODS Recent data on pituitary dysfunction after SR-TBIs is reviewed on basis of diagnosis, clinical perspectives, therapy, screening and possible prevention strategies. RESULTS Pituitary dysfunction is reported to occur in a range of 15-46.6% following SR-TBIs depending on the study design. Growth hormone is the most commonly reported pituitary hormone deficiency in athletes. Pituitary hormone deficiencies may occur during acute phase after head trauma, may improve with time or new deficiencies may develop during follow-up. Central adrenal insufficiency is the only and most critical impairment that requires urgent detection and replacement during acute phase. Decision on replacement of growth hormone and gonadal deficiencies should be individualized. Moreover these two hormones are abused by many athletes and a therapeutic use exemption from the league's drug policy may be required. CONCLUSIONS Even mild and forgotten SR-TBIs may cause PD that may have distressing consequences in some cases if remain undiagnosed. More studies are needed to elucidate epidemiology and pathophysiology of PD after SR-TBIs. Also studies to establish screening algorithms for PD as well as strategies for prevention of SR-TBIs are urgently required.
Collapse
Affiliation(s)
- Aysa Hacioglu
- Department of Endocrinology and Metabolism, Erciyes University Medical School, Kayseri, Turkey.
| | | | - Fatih Tanriverdi
- Memorial Kayseri Hospital, Endocrinology Clinic, Kayseri, Turkey
| |
Collapse
|
20
|
Abstract
PURPOSE Traumatic brain injury (TBI) is a common cause of mortality and major disability worldwide. The initial management often depends on the severity of the injury. Pituitary dysfunction can develop as a sequela of TBI, and can have long-term, debilitating impact on the patients. Early identification and prompt intervention of post-traumatic hypopituitarism (PTHP) is essential to prevent or minimize the adverse consequences of this condition. We hereby provide an overview of the current management of TBI from a neurosurgical standpoint. We then review the pathophysiology and risk factors of developing PTHP, as well as our recommendations for its management. METHODS A review of current literature on TBI and PTHP, including primary research articles, reviews and clinical guidelines. RESULTS The current neurosurgical approach to the management of TBI is presented, followed by the pathophysiology and risk factors of PTHP, as well as our recommendations for its management. CONCLUSIONS Post-traumatic hypopitutiarism is a serious and potentially debilitating condition that is likely under-recognised and under-diagnosed. From a neurosurgical perspective, we advocate a pragmatic approach, i.e. screening those considered at high risk of developing PTHP based on clinical features and biochemical/endocrinological testings; and referring them to a specialist endocrinologist for further management as indicated.
Collapse
Affiliation(s)
- Chin Lik Tan
- 0000 0004 0621 9599grid.412106.0Division of Neurosurgery, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074 Singapore
- 0000000121885934grid.5335.0Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Box 167, CB2 0QQ Cambridge, UK
| | - Peter J. Hutchinson
- 0000000121885934grid.5335.0Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Box 167, CB2 0QQ Cambridge, UK
| |
Collapse
|
21
|
Abstract
PURPOSE To estimate the total number of articles on traumatic brain injury (TBI)-related hypopituitarism and patients (including children and adolescents) with such disorder that were published until now, particularly after the author's review published on April 2000. METHODS Review of the literature retrievable on PubMed. RESULTS TBI-related hypopituitarism accounts for 7.2% of the whole literature on hypopituitarism published during the 18 years and half between May 2000 and October 2018. As a result, the total number of patients with TBI-related hypopituitarism now approximates 2200. A number of patients, both adults and children, continue to be published as case reports. Articles, including reviews and guidelines, have been published in national languages in order to maximize locally the information on TBI-related hypopituitarism. TBI-related hypopituitarism has been also studied in animals (rodents, cats and dogs). CONCLUSIONS The interest for the damage suffered by anterior pituitary as a result of TBI continues to remain high both in the adulthood and childhood.
Collapse
Affiliation(s)
- Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, 98125, Messina, Italy.
- Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, 98125, Messina, Italy.
- Interdepartmental Program on Molecular & Clinical Endocrinology, and Women's Endocrine Health, University Hospital, A.O.U. Policlinico G. Martino, Padiglione H, 4 Piano, 98125, Messina, Italy.
| |
Collapse
|
22
|
Howell S, Griesbach GS. The interplay between neuroendocrine and sleep alterations following traumatic brain injury. NeuroRehabilitation 2019; 43:327-345. [PMID: 30347624 DOI: 10.3233/nre-182483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Sleep and endocrine disruptions are prevalent after traumatic brain injury (TBI) and are likely to contribute to morbidity. OBJECTIVE To describe the interaction between sleep and hormonal regulation following TBI and elucidate the impact that alterations of these systems have on cognitive responses during the posttraumatic chronic period. METHODS Review of preclinical and clinical literature describing long-lasting endocrine dysregulation and sleep alterations following TBI. The bidirectional relationship between sleep and hormones is described. Literature describing co-occurrence between sleep-wake disturbances and hormonal dysregulation will be presented. Review of literature describing cognitive effects of seep and hormones. The cognitive and functional impact of sleep disturbances and hormonal dysregulation is discussed within the context of TBI. RESULTS/CONCLUSIONS Sleep and hormonal alterations impact cognitive and functional outcome after TBI. Diagnosis and treatment of these disturbances will impact recovery following TBI and should be considered in the post-acute rehabilitative setting.
Collapse
Affiliation(s)
| | - Grace S Griesbach
- Centre for Neuro Skills, Encino, CA, USA.,Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
23
|
Estraneo A, Loreto V, Masotta O, Pascarella A, Trojano L. Do Medical Complications Impact Long-Term Outcomes in Prolonged Disorders of Consciousness? Arch Phys Med Rehabil 2018; 99:2523-2531.e3. [PMID: 29807003 DOI: 10.1016/j.apmr.2018.04.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/15/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate medical complications (MCs) occurring within 6 months postinjury in brain-injured patients with prolonged disorders of consciousness (DoC) and to evaluate impact of MC on mortality and long-term clinical outcomes. DESIGN Prospective observational cohort study. SETTING Rehabilitation unit for acquired DoC. PARTICIPANTS Patients (N=194) with DoC (142 in vegetative state [VS], 52 in minimally conscious state; traumatic etiology 43, anoxic 69, vascular 82) consecutively admitted to a neurorehabilitation unit within 1-3 months postonset. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Mortality and improvements in clinical diagnosis and functional disability level (assessed by Coma Recovery Scale-Revised [CRS-R] and Disability Rating Scale) at 12, 24, and 36 months postonset. RESULTS Within 6 months postinjury, 188 of 194 patients (>95%) developed at least 1 MC and 142 of them (73%) showed at least 1 severe MC. Respiratory and musculoskeletal-cutaneous MCs were the most frequent, followed by endocrino-metabolic abnormalities. Follow-up, complete in 189 of 194 patients, showed that male sex and endocrine-metabolic MCs were associated with higher risk of mortality at all timepoints. Old age, anoxic etiology, lower CRS-R total scores, and diagnosis of VS at study entry predicted no clinical and functional improvements at most timepoints; however, epilepsy predicted no improvement in diagnosis at 24 months postonset only. CONCLUSIONS MCs are very frequent in patients with DoC within at least 6 months after brain injury, regardless of clinical diagnosis, etiology, and age. Endocrino-metabolic MCs are independent predictors of mortality at all timepoints; however,epilepsy predicted poor long-term outcome. Occurrence and severity of MCs in patients with DoC call for long-term appropriate levels of care after the postacute phase.
Collapse
Affiliation(s)
- Anna Estraneo
- Neurorehabilitation Unit and Research Laboratory for Disorder of Consciousness, IRCCS Maugeri ICS, Telese Terme (BN), Italy.
| | - Vincenzo Loreto
- Neurorehabilitation Unit and Research Laboratory for Disorder of Consciousness, IRCCS Maugeri ICS, Telese Terme (BN), Italy
| | - Orsola Masotta
- Neurorehabilitation Unit and Research Laboratory for Disorder of Consciousness, IRCCS Maugeri ICS, Telese Terme (BN), Italy
| | - Angelo Pascarella
- Neurorehabilitation Unit and Research Laboratory for Disorder of Consciousness, IRCCS Maugeri ICS, Telese Terme (BN), Italy
| | - Luigi Trojano
- Neurorehabilitation Unit and Research Laboratory for Disorder of Consciousness, IRCCS Maugeri ICS, Telese Terme (BN), Italy; Neuropsychology Laboratory, Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| |
Collapse
|
24
|
Tan CL, Alavi SA, Baldeweg SE, Belli A, Carson A, Feeney C, Goldstone AP, Greenwood R, Menon DK, Simpson HL, Toogood AA, Gurnell M, Hutchinson PJ. The screening and management of pituitary dysfunction following traumatic brain injury in adults: British Neurotrauma Group guidance. J Neurol Neurosurg Psychiatry 2017; 88:971-981. [PMID: 28860331 PMCID: PMC5740545 DOI: 10.1136/jnnp-2016-315500] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/22/2017] [Accepted: 04/02/2017] [Indexed: 12/19/2022]
Abstract
Pituitary dysfunction is a recognised, but potentially underdiagnosed complication of traumatic brain injury (TBI). Post-traumatic hypopituitarism (PTHP) can have major consequences for patients physically, psychologically, emotionally and socially, leading to reduced quality of life, depression and poor rehabilitation outcome. However, studies on the incidence of PTHP have yielded highly variable findings. The risk factors and pathophysiology of this condition are also not yet fully understood. There is currently no national consensus for the screening and detection of PTHP in patients with TBI, with practice likely varying significantly between centres. In view of this, a guidance development group consisting of expert clinicians involved in the care of patients with TBI, including neurosurgeons, neurologists, neurointensivists and endocrinologists, was convened to formulate national guidance with the aim of facilitating consistency and uniformity in the care of patients with TBI, and ensuring timely detection or exclusion of PTHP where appropriate. This article summarises the current literature on PTHP, and sets out guidance for the screening and management of pituitary dysfunction in adult patients with TBI. It is hoped that future research will lead to more definitive recommendations in the form of guidelines.
Collapse
Affiliation(s)
- Chin Lik Tan
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB20QQ, UK
| | | | | | - Antonio Belli
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK
| | - Alan Carson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Claire Feeney
- Centre for Neuropsychopharmacology and Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK.,Imperial Centre for Endocrinology, Imperial College Healthcare NHS Trust, St Mary's Hospital, London, UK
| | - Anthony P Goldstone
- Centre for Neuropsychopharmacology and Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK.,Imperial Centre for Endocrinology, Imperial College Healthcare NHS Trust, St Mary's Hospital, London, UK
| | | | - David K Menon
- Department of Medicine, Division of Anaesthesia, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Helen L Simpson
- Department of Endocrinology, University College London Hospitals, London, UK
| | - Andrew A Toogood
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, Birmingham, Edgbaston, UK
| | - Mark Gurnell
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB20QQ, UK
| |
Collapse
|
25
|
Assessment of the role of intracranial hypertension and stress on hippocampal cell apoptosis and hypothalamic-pituitary dysfunction after TBI. Sci Rep 2017. [PMID: 28630478 PMCID: PMC5476648 DOI: 10.1038/s41598-017-04008-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In recent years, hypopituitarism caused by traumatic brain injury (TBI) has been explored in many clinical studies; however, few studies have focused on intracranial hypertension and stress caused by TBI. In this study, an intracranial hypertension model, with epidural hematoma as the cause, was used to explore the physiopathological and neuroendocrine changes in the hypothalamic-pituitary axis and hippocampus. The results demonstrated that intracranial hypertension increased the apoptosis rate, caspase-3 levels and proliferating cell nuclear antigen (PCNA) in the hippocampus, hypothalamus, pituitary gland and showed a consistent rate of apoptosis within each group. The apoptosis rates of hippocampus, hypothalamus and pituitary gland were further increased when intracranial pressure (ICP) at 24 hour (h) were still increased. The change rates of apoptosis in hypothalamus and pituitary gland were significantly higher than hippocampus. Moreover, the stress caused by surgery may be a crucial factor in apoptosis. To confirm stress leads to apoptosis in the hypothalamus and pituitary gland, we used rabbits to establish a standard stress model. The results confirmed that stress leads to apoptosis of neuroendocrine cells in the hypothalamus and pituitary gland, moreover, the higher the stress intensity, the higher the apoptosis rate in the hypothalamus and pituitary gland.
Collapse
|
26
|
Hudspeth VR, Fischer WA, DeCherney GS. Forty Years Of Unrecognized Hypopituitarism Diagnosed By Physical Exam. AACE Clin Case Rep 2017. [DOI: 10.4158/ep161426.cr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
27
|
Devesa J, Díaz-Getino G, Rey P, García-Cancela J, Loures I, Nogueiras S, Hurtado de Mendoza A, Salgado L, González M, Pablos T, Devesa P. Brain Recovery after a Plane Crash: Treatment with Growth Hormone (GH) and Neurorehabilitation: A Case Report. Int J Mol Sci 2015; 16:30470-82. [PMID: 26703581 PMCID: PMC4691184 DOI: 10.3390/ijms161226244] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 12/12/2015] [Accepted: 12/16/2015] [Indexed: 12/20/2022] Open
Abstract
The aim of this study is to describe the results obtained after growth hormone (GH) treatment and neurorehabilitation in a young man that suffered a very grave traumatic brain injury (TBI) after a plane crash. Methods: Fifteen months after the accident, the patient was treated with GH, 1 mg/day, at three-month intervals, followed by one-month resting, together with daily neurorehabilitation. Blood analysis at admission showed that no pituitary deficits existed. At admission, the patient presented: spastic tetraplegia, dysarthria, dysphagia, very severe cognitive deficits and joint deformities. Computerized tomography scanners (CT-Scans) revealed the practical loss of the right brain hemisphere and important injuries in the left one. Clinical and blood analysis assessments were performed every three months for three years. Feet surgery was needed because of irreducible equinovarus. Results: Clinical and kinesitherapy assessments revealed a prompt improvement in cognitive functions, dysarthria and dysphagia disappeared and three years later the patient was able to live a practically normal life, walking alone and coming back to his studies. No adverse effects were observed during and after GH administration. Conclusions: These results, together with previous results from our group, indicate that GH treatment is safe and effective for helping neurorehabilitation in TBI patients, once the acute phase is resolved, regardless of whether or not they have GH-deficiency (GHD).
Collapse
Affiliation(s)
- Jesús Devesa
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Santiago de Compostela 15710, Spain.
| | | | - Pablo Rey
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
| | | | - Iria Loures
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
| | - Sonia Nogueiras
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
| | | | - Lucía Salgado
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
| | - Mónica González
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
| | - Tamara Pablos
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
| | - Pablo Devesa
- Scientific Direction Medical Centre Foltra, Teo 15886, Spain.
| |
Collapse
|
28
|
Wilkinson CW. COMMENTARY ON A NEUROENDOCRINE APPROACH TO PATIENTS WITH TRAUMATIC BRAIN INJURY. Endocr Pract 2015; 21:851-3. [PMID: 26172130 DOI: 10.4158/ep15854.co] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|