1
|
Demaria M. Cancer treatments accelerate ageing. Nat Rev Cancer 2025:10.1038/s41568-025-00801-2. [PMID: 40016290 DOI: 10.1038/s41568-025-00801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Affiliation(s)
- Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, Germany.
| |
Collapse
|
2
|
Lim KK, Koh NZH, Zeng YB, Chuan JK, Raechell R, Chen ES. Resistance to Chemotherapeutic 5-Fluorouracil Conferred by Modulation of Heterochromatic Integrity through Ino80 Function in Fission Yeast. Int J Mol Sci 2023; 24:10687. [PMID: 37445861 DOI: 10.3390/ijms241310687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
5-Fluorouracil (5-FU) is a conventional chemotherapeutic drug widely used in clinics worldwide, but development of resistance that compromises responsiveness remains a major hurdle to its efficacy. The mechanism underlying 5-FU resistance is conventionally attributed to the disruption of nucleotide synthesis, even though research has implicated other pathways such as RNA processing and chromatin dysregulation. Aiming to clarify resistance mechanisms of 5-FU, we tested the response of a collection of fission yeast (Schizosaccharomyces pombe) null mutants, which confer multiple environmental factor responsiveness (MER). Our screen identified disruption of membrane transport, chromosome segregation and mitochondrial oxidative phosphorylation to increase cellular susceptibility towards 5-FU. Conversely, we revealed several null mutants of Ino80 complex factors exhibited resistance to 5-FU. Furthermore, attenuation of Ino80 function via deleting several subunit genes reversed loss of chromosome-segregation fidelity in 5-FU in the loss-of-function mutant of the Argonaute protein, which regulates RNA interference (RNAi)-dependent maintenance of pericentromeric heterochromatin. Our study thus uncovered a critical role played by chromatin remodeling Ino80 complex factors in 5-FU resistance, which may constitute a possible target to modulate in reversing 5-FU resistance.
Collapse
Affiliation(s)
- Kim Kiat Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Nathaniel Zhi Hao Koh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Yi Bing Zeng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Jun Kai Chuan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Raechell Raechell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- National University Health System (NUHS), Singapore 119228, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- NUS Graduate School-Integrative Sciences & Engineering Programme, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
3
|
Ohtsuka H, Sakata H, Kitazaki Y, Tada M, Shimasaki T, Otsubo Y, Maekawa Y, Kobayashi M, Imada K, Yamashita A, Aiba H. The ecl family gene ecl3+ is induced by phosphate starvation and contributes to sexual differentiation in fission yeast. J Cell Sci 2023; 136:287015. [PMID: 36779416 PMCID: PMC10038150 DOI: 10.1242/jcs.260759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/07/2023] [Indexed: 02/14/2023] Open
Abstract
In Schizosaccharomyces pombe, ecl family genes are induced by several signals, such as starvation of various nutrients, including sulfur, amino acids and Mg2+, and environmental stress, including heat or oxidative stress. These genes mediate appropriate cellular responses and contribute to the maintenance of cell viability and induction of sexual differentiation. Although this yeast has three ecl family genes with overlapping functions, any environmental conditions that induce ecl3+ remain unidentified. We demonstrate that ecl3+ is induced by phosphate starvation, similar to its chromosomally neighboring genes, pho1+ and pho84+, which respectively encode an extracellular acid phosphatase and an inorganic phosphate transporter. ecl3+ expression was induced by the transcription factor Pho7 and affected by the cyclin-dependent kinase (CDK)-activating kinase Csk1. Phosphate starvation induced G1 arrest and sexual differentiation via ecl family genes. Biochemical analyses suggested that this G1 arrest was mediated by the stabilization of the CDK inhibitor Rum1, which was dependent on ecl family genes. This study shows that ecl family genes are required for appropriate responses to phosphate starvation and provides novel insights into the diversity and similarity of starvation responses.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hiroki Sakata
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yuto Kitazaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Masanobu Tada
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Aichi 444-858, Japan
- National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
- Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Yasukichi Maekawa
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Mikuto Kobayashi
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Kazuki Imada
- Department of Chemistry and Biochemistry, National Institute of Technology (KOSEN), Suzuka College, Suzuka 510-0294, Japan
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Aichi 444-858, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
4
|
Chen G, Zhu X, Li J, Zhang Y, Wang X, Zhang R, Qin X, Chen X, Wang J, Liao W, Wu Z, Lu L, Wu W, Yu H, Ma L. Celastrol inhibits lung cancer growth by triggering histone acetylation and acting synergically with HDAC inhibitors. Pharmacol Res 2022; 185:106487. [DOI: 10.1016/j.phrs.2022.106487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 10/31/2022]
|
5
|
Ma T, Ma N, Chen JL, Tang FX, Zong Z, Yu ZM, Chen S, Zhou TC. Expression and prognostic value of Chromobox family members in gastric cancer. J Gastrointest Oncol 2020; 11:983-998. [PMID: 33209492 DOI: 10.21037/jgo-20-223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The Chromobox (CBX) protein family, which is a crucial part of the epigenetic regulatory complex, plays an important role in the occurrence and development of cancer; however, the function and prognostic value of CBX family members in gastric cancer is not clear. Methods we investigated the relationship between CBX members and gastric cancer using a range of tools and databases: Oncomine, Kaplan-Meier plotter, cBioPortal, ULCAN, Metascape, and GEPIA. Results The results showed that, relative to normal gastric tissue, mRNA expression levels of CBX1-6 were significantly higher in gastric cancer tissue, whereas the level of CBX7 was significantly lower. Furthermore, overexpression of CBX3-6 and underexpression of CBX7 mRNAs was significantly related to the poor prognosis and survival of gastric cancer patients, making these CBX family members useful biomarkers. Finally, overexpression of CBX1 mRNA was significantly related to the poor prognosis of gastric cancer patients treated with adjuvant 5-fluorouracil-based chemotherapy. Conclusions The members of the CBX family can be used as prognosis and survival biomarkers for gastric cancer and CBX1 may be a biomarker for choosing the chemotherapy regimen of gastric cancer patients.
Collapse
Affiliation(s)
- Tao Ma
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Ning Ma
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Jia-Lin Chen
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Fu-Xin Tang
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhuo-Min Yu
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Shuang Chen
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Tai-Cheng Zhou
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| |
Collapse
|
6
|
De Zoysa T, Phizicky EM. Hypomodified tRNA in evolutionarily distant yeasts can trigger rapid tRNA decay to activate the general amino acid control response, but with different consequences. PLoS Genet 2020; 16:e1008893. [PMID: 32841241 PMCID: PMC7473580 DOI: 10.1371/journal.pgen.1008893] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/04/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
All tRNAs are extensively modified, and modification deficiency often results in growth defects in the budding yeast Saccharomyces cerevisiae and neurological or other disorders in humans. In S. cerevisiae, lack of any of several tRNA body modifications results in rapid tRNA decay (RTD) of certain mature tRNAs by the 5'-3' exonucleases Rat1 and Xrn1. As tRNA quality control decay mechanisms are not extensively studied in other eukaryotes, we studied trm8Δ mutants in the evolutionarily distant fission yeast Schizosaccharomyces pombe, which lack 7-methylguanosine at G46 (m7G46) of their tRNAs. We report here that S. pombe trm8Δ mutants are temperature sensitive primarily due to decay of tRNATyr(GUA) and that spontaneous mutations in the RAT1 ortholog dhp1+ restored temperature resistance and prevented tRNA decay, demonstrating conservation of the RTD pathway. We also report for the first time evidence linking the RTD and the general amino acid control (GAAC) pathways, which we show in both S. pombe and S. cerevisiae. In S. pombe trm8Δ mutants, spontaneous GAAC mutations restored temperature resistance and tRNA levels, and the trm8Δ temperature sensitivity was precisely linked to GAAC activation due to tRNATyr(GUA) decay. Similarly, in the well-studied S. cerevisiae trm8Δ trm4Δ RTD mutant, temperature sensitivity was closely linked to GAAC activation due to tRNAVal(AAC) decay; however, in S. cerevisiae, GAAC mutations increased tRNA loss and exacerbated temperature sensitivity. A similar exacerbated growth defect occurred upon GAAC mutation in S. cerevisiae trm8Δ and other single modification mutants that triggered RTD. Thus, these results demonstrate a conserved GAAC activation coincident with RTD in S. pombe and S. cerevisiae, but an opposite impact of the GAAC response in the two organisms. We speculate that the RTD pathway and its regulation of the GAAC pathway is widely conserved in eukaryotes, extending to other mutants affecting tRNA body modifications.
Collapse
Affiliation(s)
- Thareendra De Zoysa
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
7
|
Holič R, Pokorná L, Griač P. Metabolism of phospholipids in the yeast
Schizosaccharomyces pombe. Yeast 2019; 37:73-92. [DOI: 10.1002/yea.3451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022] Open
Affiliation(s)
- Roman Holič
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| | - Lucia Pokorná
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| | - Peter Griač
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| |
Collapse
|
8
|
Rallis C, Townsend S, Bähler J. Genetic interactions and functional analyses of the fission yeast gsk3 and amk2 single and double mutants defective in TORC1-dependent processes. Sci Rep 2017; 7:44257. [PMID: 28281664 PMCID: PMC5345095 DOI: 10.1038/srep44257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/06/2017] [Indexed: 01/03/2023] Open
Abstract
The Target of Rapamycin (TOR) signalling network plays important roles in aging and disease. The AMP-activated protein kinase (AMPK) and the Gsk3 kinase inhibit TOR during stress. We performed genetic interaction screens using synthetic genetic arrays (SGA) with gsk3 and amk2 as query mutants, the latter encoding the regulatory subunit of AMPK. We identified 69 negative and 82 positive common genetic interactors, with functions related to cellular growth and stress. The 120 gsk3-specific negative interactors included genes functioning in translation and ribosomes. The 215 amk2-specific negative interactors included genes functioning in chromatin silencing and DNA damage repair. Both amk2- and gsk3-specific interactors were enriched in phenotype categories related to abnormal cell size and shape. We also performed SGA screen with the amk2 gsk3 double mutant as a query. Mutants sensitive to 5-fluorouracil, an anticancer drug are under-represented within the 305 positive interactors specific for the amk2 gsk3 query. The triple-mutant SGA screen showed higher number of negative interactions than the double mutant SGA screens and uncovered additional genetic network information. These results reveal common and specialized roles of AMPK and Gsk3 in mediating TOR-dependent processes, indicating that AMPK and Gsk3 act in parallel to inhibit TOR function in fission yeast.
Collapse
Affiliation(s)
- Charalampos Rallis
- Research Department of Genetics, Evolution &Environment and UCL Institute of Healthy Ageing, University College London, Gower Street, WC1E 6BT, London, UK
| | - StJohn Townsend
- Research Department of Genetics, Evolution &Environment and UCL Institute of Healthy Ageing, University College London, Gower Street, WC1E 6BT, London, UK
| | - Jürg Bähler
- Research Department of Genetics, Evolution &Environment and UCL Institute of Healthy Ageing, University College London, Gower Street, WC1E 6BT, London, UK
| |
Collapse
|
9
|
Fenech M, Knasmueller S, Bolognesi C, Bonassi S, Holland N, Migliore L, Palitti F, Natarajan AT, Kirsch-Volders M. Molecular mechanisms by which in vivo exposure to exogenous chemical genotoxic agents can lead to micronucleus formation in lymphocytes in vivo and ex vivo in humans. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:12-25. [DOI: 10.1016/j.mrrev.2016.04.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/18/2016] [Indexed: 12/24/2022]
|
10
|
Hu L, Yao F, Ma Y, Liu Q, Chen S, Hayafuji T, Kuno T, Fang Y. Genetic evidence for involvement of membrane trafficking in the action of 5-fluorouracil. Fungal Genet Biol 2016; 93:17-24. [PMID: 27255861 DOI: 10.1016/j.fgb.2016.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/24/2016] [Accepted: 05/29/2016] [Indexed: 10/21/2022]
Abstract
To identify novel genes that mediate cellular sensitivity and resistance to 5-fluorouracil (5-FU), we performed a genome-wide genetic screening to identify altered susceptibility to 5-FU by Schizosaccharomyces pombe haploid nonessential gene deletion library containing 3004 deletion mutants. We identified 50 hypersensitive and 12 resistant mutants to this drug. Mutants sensitive or resistant to 5-FU were classified into various categories based on their putative functions. The largest group of the genes whose disruption renders cells altered susceptibility to 5-FU is involved in nucleic acid metabolism, but to our surprise, the second largest group is involved in membrane trafficking. In addition, several other membrane traffic mutants examined including gdi1-i11, ypt3-i5, Δryh1, Δric1, and Δaps1 exhibited hypersensitivity to 5-FU. Furthermore, we found that 5-FU in low concentration that generally do not affect cell growth altered the localization of Syb1, a secretory vesicle SNARE synaptobrevin which is cycled between the plasma membrane and the endocytic pathway. Notably, 5-FU at such low concentration also significantly inhibited the secretion of acid phosphatase. Altogether, our findings revealed the first evidence that 5-FU influences membrane trafficking as the potential underlying mechanism of the drug action.
Collapse
Affiliation(s)
- Lingling Hu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110112, China; Division of Pharmacology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Fan Yao
- Department of Breast Surgery and Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Yan Ma
- Division of Pharmacology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Qiannan Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110112, China
| | - Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110112, China
| | - Tsutomu Hayafuji
- Division of Pharmacology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Takayoshi Kuno
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110112, China; Division of Pharmacology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110112, China.
| |
Collapse
|
11
|
Graziano S, Gullì M, Maestri E, Marmiroli N. The global effect of exposing bakers' yeast to 5-fluoruracil and nystatin; a view to Toxichip. CHEMOSPHERE 2016; 145:470-479. [PMID: 26694798 DOI: 10.1016/j.chemosphere.2015.11.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/07/2015] [Accepted: 11/15/2015] [Indexed: 06/05/2023]
Abstract
A genome-wide screen of a haploid deletion library of bakers' yeast (Saccharomyces cerevisiae) was conducted to document the phenotypic and transcriptional impact of exposure to each of the two pharmaceutical products 5-fluorouracil (an anti-tumor agent) and nystatin (an anti-fungal agent). The combined data set was handled by applying a systems biology perspective. A Gene Ontology analysis identified functional categories previously characterized as likely targets for both compounds. Induced transcription profiles were well correlated in yeast and human HepG2 cells. The identified molecular targets for both compounds were used to suggest a small set of human orthologues as appropriate for testing on human material. The yeast system developed here (denoted "Toxichip") has likely utility for identifying biomarkers relevant for health and environmental risk assessment applications required as part of the development process for novel pharmaceuticals.
Collapse
Affiliation(s)
- Sara Graziano
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Mariolina Gullì
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Elena Maestri
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Nelson Marmiroli
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| |
Collapse
|
12
|
Nguyen TTT, Chua JKK, Seah KS, Koo SH, Yee JY, Yang EG, Lim KK, Pang SYW, Yuen A, Zhang L, Ang WH, Dymock B, Lee EJD, Chen ES. Predicting chemotherapeutic drug combinations through gene network profiling. Sci Rep 2016; 6:18658. [PMID: 26791325 PMCID: PMC4726371 DOI: 10.1038/srep18658] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 11/23/2015] [Indexed: 12/29/2022] Open
Abstract
Contemporary chemotherapeutic treatments incorporate the use of several agents in combination. However, selecting the most appropriate drugs for such therapy is not necessarily an easy or straightforward task. Here, we describe a targeted approach that can facilitate the reliable selection of chemotherapeutic drug combinations through the interrogation of drug-resistance gene networks. Our method employed single-cell eukaryote fission yeast (Schizosaccharomyces pombe) as a model of proliferating cells to delineate a drug resistance gene network using a synthetic lethality workflow. Using the results of a previous unbiased screen, we assessed the genetic overlap of doxorubicin with six other drugs harboring varied mechanisms of action. Using this fission yeast model, drug-specific ontological sub-classifications were identified through the computation of relative hypersensitivities. We found that human gastric adenocarcinoma cells can be sensitized to doxorubicin by concomitant treatment with cisplatin, an intra-DNA strand crosslinking agent, and suberoylanilide hydroxamic acid, a histone deacetylase inhibitor. Our findings point to the utility of fission yeast as a model and the differential targeting of a conserved gene interaction network when screening for successful chemotherapeutic drug combinations for human cells.
Collapse
Affiliation(s)
- Thi Thuy Trang Nguyen
- Department of Biochemistry, National University of Singapore, Singapore.,National University Health System (NUHS), Singapore
| | - Jacqueline Kia Kee Chua
- Department of Biochemistry, National University of Singapore, Singapore.,Department of Chemistry, Faculty of Science, National University of Singapore, Singapore
| | - Kwi Shan Seah
- Department of Biochemistry, National University of Singapore, Singapore.,National University Health System (NUHS), Singapore
| | - Seok Hwee Koo
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Changi General Hospital, Ministry of Health, Singapore
| | - Jie Yin Yee
- National University Health System (NUHS), Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eugene Guorong Yang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Kim Kiat Lim
- Department of Biochemistry, National University of Singapore, Singapore.,National University Health System (NUHS), Singapore
| | | | - Audrey Yuen
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore
| | - Louxin Zhang
- Department of Mathematics, Faculty of Science, National University of Singapore, Singapore
| | - Wee Han Ang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.,Department of Chemistry, Faculty of Science, National University of Singapore, Singapore
| | - Brian Dymock
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Edmund Jon Deoon Lee
- National University Health System (NUHS), Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, National University of Singapore, Singapore.,National University Health System (NUHS), Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
13
|
Affiliation(s)
- Timothy C Humphrey
- a CRUK MRC Oxford Institute for Radiation Oncology; Department of Oncology ; University of Oxford ; Oxford , UK
| |
Collapse
|